Page 206 - Fundamentals of The Finite Element Method for Heat and Fluid Flow
P. 206

CONVECTION HEAT TRANSFER
                        198
                        for the scalar variable φ into the above equation, we obtain
                                     n+1
                                             n
                                                                                    ∂[N]
                                                              ∂[N]


                            The above equation is valid globally. On substituting the global spatial approximation
                                  {φ}
                                        −{φ}
                              T
                                                                                          n
                                                                     n
                           [N] [N]            d
 =−u 1   [N] T    {φ} d
 − u 2  [N] T   {φ} d
                          
             t               
     ∂x 1            
     ∂x 2
                                                             ∂     ∂[N]
                                                                           n
                                                    +   [N] T    k      {φ} d
                                                       
    ∂x 1   ∂x 1
                                                             ∂    ∂[N]     n

                                                           T
                                                    +   [N]      k      {φ} d
                                                       
    ∂x 2   ∂x 2
                                                       t        ∂     ∂[N]   n    ∂[N]   n
                                                    +    u 1        u 1   {φ} + u 2   {φ}    d
                                                       2    
 ∂x 1    ∂x 1         ∂x 2
                                                       t        ∂     ∂[N]   n    ∂[N]    n
                                                    +    u 2        u 1   {φ} + u 2   {φ }    d
                                                       2    
 ∂x 2    ∂x 1         ∂x 2
                                                                                           (7.109)
                           The above equation is valid only if all the element contributions in a finite element
                        domain are assembled. The elemental matrices are derived by applying the following for-
                        mula for integration over linear triangular elements:
                                                                 a!b!c!2A

                                                  a  b  c
                                                N N N d
 =                                 (7.110)
                                                  i  j  k
                                               
              (a + b + c + 2)!
                        and for the line integral

                                                  a  b  c        a!b!c!
                                                N N N d	 =                                 (7.111)
                                                       k
                                                    i
                                                  i
                                               	             (a + b + c + 1)!
                        where A is the area of a triangular element and 	 is the length of a boundary edge. Applying
                        the above formulae, we obtain the element characteristic equations as follows:
                           The mass matrix is
                                                                          
                                                                      211
                                                                  A

                                                        T
                                            [M e ] =  [N] [N]d
 =    121                 (7.112)
                                                    
             12
                                                                      112
                           The convection matrix is
                                                           ∂[N]     ∂[N]
                                           [C e ] =  [N] T  u 1  + u 2    d
                                                  
         ∂x 1     ∂x 2
                                                                         
                                                     b i b j b k     c i c j c k
                                                 u 1             u 2
                                               =     b i b j b k    +   c i c j c k    (7.113)
                                                  6               6
                                                     b i b j b k     c i c j c k
                        where
                                                b i = y j − y k ;  c i = x k − x j
                                                b j = y k − y i ;  c j = x i − x k
                                                b k = y i − y j ;  c k = x j − x i         (7.114)
   201   202   203   204   205   206   207   208   209   210   211