Page 137 - Geometric Modeling and Algebraic Geometry
P. 137

138    T. Beck and J. Schicho

                                    0= c 1 − c 2
                                         1     1        1
                                    0= − c 5 + c 4 + c 2 − c 3
                                         4     4        4
                                    0= c 1 − c 3 + c 6
                                                         5
                                    0= c 7 − c 4 + c 2 +5c 6 − c 3
                                                         2
                                    0= c 1 − c 2 − 16c 3 +16c 4 − 16c 5 + 256c 6 − 256c 7 + 256c 8
                              Solving the system with respect to c 6 , c 7 and c 8 , we compute a basis of the vector
                           space V of theorem 12:

                                            b 1 =4 + 4x +5y − yx +  15 yx + y 2
                                                                       2
                                                             7
                                                             2     2
                                            b 2 = −4 − 4x − 4y +7yx − 5yx + y x
                                                                       2
                                                                           2
                                            b 3 =4 + 4x +4y − 6yx +6yx + y x
                                                                          2 2
                                                                     2
                                                     !
                           In other words  g 1 g 2  ,  g 1 g 2 ,  g 1 g 2  is a basis of L   C (−K ∅ ), the linear system of our

                                                   b 3
                                              b 2
                                          b 1
                           anticanonical divisor.
                           7.7.5 Birational equivalence to a conic
                                               b i
                           The rational functions  g 1 g 2  are the coordinates of a map from C to the projective
                           plane P . We get the same map if we multiply all coordinates by their common
                                 2
                                 Q
                           denominator g 1 g 2 :
                                                     ⎛                              ⎞
                                             
         4+4x +5y − yx +   15 yx + y  2
                                                                   7
                                                                             2
                                               x                   2      2
                                   C     P :       →  ⎝  −4 − 4x − 4y +7yx − 5yx + y x
                                                                              2
                                                                                  2 ⎠
                                          2
                                          Q    y
                                                       4+4x +4y − 6yx +6yx + y x
                                                                                2 2
                                                                            2
                              Dividing by the last coordinate, we get a map to A :
                                                                      2
                                                                      Q
                                                           "                       #
                                                   
         8+8x+10y−7yx+15yx +2y  2
                                                                             2
                                                     x
                                     ψ 1 : C     A :     →   2(4+4x+4y−6yx+6yx 2 +y 2 x 2 )
                                                2
                                                Q    y       −4−4x−4y+7yx−5yx +y x
                                                                               2
                                                                            2
                                                             4+4x+4y−6yx+6yx 2 +y 2 x 2
                              The image of this map is a conic C ⊂ A . To avoid confusion, we use the

                                                                  2
                                                                  Q
                           coordinates x and y in the image domain. We can compute the implicit equation


                           f =12x y + y +9x of C by eliminating the variables x and y using Gr¨ obner




                                          2
                           bases techniques. Then ψ 1 is a birational morphism with inverse
                                                            "                     #


                                                    
         (4y +3)(4y +36y +27)
                                                                       2
                                                      x
                                     ψ −1  : C     C :     →    y   (2y   +3)(34y   +27)    .


                                                                         2
                                       1              y       −(2y +3)(14y +45y +27)
                                                                    4y  2 (4y   +3)
                           In other words ψ −1  is a parametrization of C by the conic C .

                                         1
   132   133   134   135   136   137   138   139   140   141   142