Page 134 - Geometric Modeling and Algebraic Geometry
P. 134

7 Curve Parametrization Exploiting the Newton Polygon  135
                                               s   v 6 = v 7





                                               v 8
                                                   Π(f)           v 4 = v 5

                                                                 v 3

                                                                      r
                                               v 1
                                                          v 2
                                               Fig. 7.4. Newton polygon of example

                           7.7.1 Analysis of the singularities

                           The first chart U 1 contains two singular points, Q 1 with coordinates (u 1 ,v 1 )=
                           (−1, 0) and Q 2 with coordinates (u 1 ,v 1 )=(0, −1). The point Q 1 is also con-
                           tained in U 2 and Q 2 is contained in U 8 . These are already all singular points, so all
                           subsequent computations can be done in the first chart. For future reference we also
                           give the partial derivative by v 1 :

                                      = −54v u − 12v u 1 +26v u +8v 1 u − 40v u 1 − 8v 1 u 2
                                  d f 1
                                                              2 2
                                                                       3
                                             2 3
                                                     3
                                                                             2
                                             1 1     1       1 1       1     1         1
                                  d v 1
                                          2
                                      +8v − 8v 1 u 1 +8v 1
                                          1
                              According to the singularities we compute Puiseux expansions in u 1 +1 for Q 1
                           and in u 1 for Q 2 :
                               σ 1 (u 1 +1) = − (u 1 +1)+ γ 1 (u 1 +1) +( 608 1 −  51  )(u 1 +1) ...
                                                                       γ
                                                                2
                                                                                       3
                                                                    435
                                             1
                                             4                             2432
                                  σ 2 (u 1 )= −1 − u 1 + γ 2 u +(  21 γ 2 +  195 )u ...
                                                         2
                                                                        3
                                                5
                                                         1              1
                                                2            4      16
                           Here γ 1 and γ 2 are elements of Q s.t. 1024γ + 516γ 1 +63 = 0 and 16γ +24γ 2 −
                                                                                     2
                                                              2
                                                              1                      2
                           45 = 0. From these expansions we get the following two monomorphisms from the
                           function field into a field of Laurent series:
                                       ϕ 1 :Q(Q[u 1 ,v 1 ]/f 1 ) → Q((t)) :

                                            u 1 +1  → t
                                                v 1  →− t + γ 1 t +( 608 1 −  51  )t ...
                                                                     γ
                                                                  435
                                                                              3
                                                       1
                                                              2
                                                       4                 2432
                                       ϕ 2 :Q(Q[u 1 ,v 1 ]/f 1 ) → Q((t)) :

                                                u 1  → t
                                            v 1 +1  →− t + γ 2 t +(  21 γ 2 +  195  )t ...
                                                       5
                                                                            3
                                                              2
                                                       2          4      16
                           These homomorphisms induce valuations ν i := ord t ◦ϕ i . Using these valuations we
                           are able to speak about a resolution π : C → C without constructing it explicitly.
   129   130   131   132   133   134   135   136   137   138   139