Page 133 - Geometric Modeling and Algebraic Geometry
P. 133

134    T. Beck and J. Schicho
                           Algorithm 1 Parametrize(f : K[x, y]) : L(t) ∪{FAIL}
                                                                 2
                           Require: a polynomial f ∈ K[x, y] irreducible as an element of K[x, y]
                                   satisfying condition (*)
                           Ensure: a proper parametrization (X(t),Y (t)) ∈ L(t) s.t.
                                                                   2
                                  f(X(t),Y (t)) = 0 or FAIL if no such parametrization exists
                                  (here L is an algebraic extension of K of least degree)
                            1: Compute Π(f) and determine the chart representation of the curve C embedded in the

                              toric surface S =  1≤i≤n  U i (see section 7.2.4);
                            2: δ := 0;
                            3: for P ∈ Sing(C) do
                            4:  Compute the delta invariant δ P ;
                            5:  δ := δ + δ P ;
                            6: end for
                            7: if #(Π(f) ) − δ  =0 then
                                      ◦
                            8:  return FAIL; {The genus is not zero, see theorem 4.}
                            9: end if
                           10: Find l 1,k 1,l 2,k 2 as in section 7.5.4;
                           11: Set S 1 := L S(D [l 1 ,k 1 ] ), S 2 := L S(D [l 2 ,k 2 ] ) and S 3 := L S(D [l 1 ,k 2 ] ) (see lemma 2);
                           12: Compute α ν for every valuation ν ∈V Sing(C) (see section 7.5.3);
                           13: for ν ∈V Sing(C) do
                           14:  Set S 1 := {g ∈ S 1 | ν [l 1 ,k 1 ] (g) ≥ α ν };
                           15:  Set S 2 := {g ∈ S 2 | ν [l 2 ,k 2 ] (g) ≥ α ν };

                                {These steps compute L   C  (K [l 1 ,k 1 ] ) and L   C  (K [l 2 ,k 2 ] ) using theorem 11.}
                           16: end for
                           17: Choose elements 0  = g 1 ∈ S 1 and 0  = g 2 ∈ S 2, compute the intersection locus I ⊂ C
                              of the effective divisor (g 1)+ D [l 1 ,k 1 ] +(g 2)+ D [l 2 ,k 2 ] with the curve C and the values
                              β j,ν for ν ∈V I (see section 7.5.3);
                           18: for ν ∈V I do
                           19:  Set S 3 := {g ∈ S 3 | ν [l 1 ,k 2 ] (g) ≥ β 1,ν + β 2,ν + α ν };
                           20: end for
                           21: Choose a basis {b 1,b 2,b 3}⊂ S 3 ∩ K[x, y].
                                                                   2
                           22: Compute the defining equation of the image C ⊂ A of the birational map ψ 1 :(x, y)  →
                                                                   K
                              (  b 1  ,  b 2  ) and compute its rational inverse ψ −1 .
                                                             1
                               b 3
                                  b 3

                           23: Find a parametrization ψ 2 of the conic C using a minimal degree field extension.
                           24: return ψ −1  ◦ ψ 2;
                                     1
                                   f 1 = −27v u − 4v u 1 +13v u +8v 1 u − 20v u 1 − 8v 1 u 2
                                            2 3
                                                    3
                                                                     3
                                                                            2
                                                            2 2
                                            1 1     1       1 1      1      1        1
                                      +4v − 8v 1 u 1 +4u +8v 1 +8u 1 +4
                                                       2
                                          2
                                          1            1
                                           4 3     4 2     3 2    3        2 2    2
                                   f 2 = −4v u +4v u − 20v u +8v u 2 +13v u − 8v u 2
                                           2 2     2 2     2 2    2        2 2    2
                                      − 27v 2 u +4v − 8v 2 u 2 +8v 2 +8u 2 +4
                                                  2
                                             2
                                             2    2
                                   f 3 = ...
   128   129   130   131   132   133   134   135   136   137   138