Page 135 - Geometric Modeling and Algebraic Geometry
P. 135

136    T. Beck and J. Schicho
                           For example ν 1 and its conjugate with respect to the Galois extension Q(γ 1 ) | Q
                           correspond to two points in the preimage π  −1 (Q 1 ). We compute the adjoint orders
                           for these valuations (and their conjugates):

                                                              d ϕ 1 (u 1 )
                                                d f 1
                                                      − ord t
                                                                 d t
                                    =ord t ϕ 1
                                α ν 1
                                                d v 1
                                    =ord t ((  129  + 128γ 1 )t +(−  3225  −  3200 γ 1 )t + ... ) − ord t (1)
                                                                          3
                                                       2
                                            4                76     19
                                    =2 − 0=2

                                                              d ϕ 2 (u 1 )
                                                d f 1
                                                      − ord t
                                                                 d t
                                    =ord t ϕ 2
                                α ν 2
                                                d v 1
                                    =ord t ((6 + 8γ 2 )t +(  39  +26γ 2 )t + ... ) − ord t (1)
                                                                 3
                                                   2
                                                        2
                                    =2 − 0=2
                           7.7.2 Checking rationality
                           The number of interior points of Π(f) is equal to 4. Again from [8, p. 1620], we see
                                        =2. Hence genus(C)=4 − 2 − 2=0 and C is parametrizable.
                           that δ Q 1
                                  = δ Q 2
                           7.7.3 Computing two adjoints
                              s                    s                     s







                                               r                     r                     r
                                 Fig. 7.5. Bases for the linear systems L S(D [1,1] ), L S(D [7,8] ) and L S(D [7,1] )


                              First we have to compute a denominator g 1 g 2 . We choose l 1 = k 1 =1 and
                                                                             (K [1,1] ) and show its

                           l 2 =7, k 2 =8. We make an indetermined Ansatz for g 1 ∈L   C
                           local equation g 1,1,[1,1] (compare figure 7.5):
                                            g 1 := c 0 x + c 1 xy + c 2 x y + c 3 xy + c 4 x y
                                                                        2
                                                                2
                                                                               2 2
                                        g 1,1,[1,1] = c 0 + c 1 v 1 + c 2 u 1 v 1 + c 3 v + c 4 u 1 v 2
                                                                      2
                                                                      1       1
                                                                          yields the following con-
                                                       and ν 2 (g 1,1,[1,1] ) ≥ α ν 2
                              Requiring ν 1 (g 1,1,[1,1] ) ≥ α ν 1
                           straints:
   130   131   132   133   134   135   136   137   138   139   140