Page 224 - Geometric Modeling and Algebraic Geometry
P. 224
12 Approximate Implicitization of Space Curves and of Surfaces of Revolution 227
proximate algebraic methods’ (GAIA II), and by the Austrian Science Fund (FWF)
in the frame of the special research area SFB F013.
References
1. Aigner, M., J¨uttler, B., Kim, M.–S.: Analyzing and enhancing the robustness of implicit
representations, in: Geometric Modelling and Processing 2004, IEEE Press, 131–140.
2. Chuang, J., Hoffmann, C.: On local implicit approximation and its applications. ACM
Trans. Graphics 8, 4:298–324, (1989)
3. Corless, R., Giesbrecht, M., Kotsireas, I., Watt, S.: Numerical implicitization of paramet-
ric hypersurfaces with linear algebra. In: AISC’2000 Proceedings, Springer, LNAI 1930.
4. Cox, D., Little, J., O’Shea, D.: Using algebraic geometry, Springer Verlag, New York
1998.
5. Cox, D., Goldman, R., Zhang, M.: On the validity of implicitization by moving quadrics
for rational surfaces with no base points, J. Symbolic Computation, 11, (1999)
6. Dokken, T., et al.: Intersection algorithms for geometry based IT-applications using ap-
proximate algebraic methods, EU project IST–2001–35512 GAIA II, 2002-2005.
7. Dokken, T., and Thomassen, J., Overview of Approximate Implicitization, in: Topics in
Algebraic Geometry and Geometric Modeling, AMS Cont. Math. 334 (2003), 169–184.
8. Gonzalez-Vega, L.: Implicitization of parametric curves and surfaces by using multidi-
mensional Newton formulae. J. Symb. Comput. 23 (2-3), 137-151 (1997)
9. Hoschek, J., and J¨uttler, B.: Techniques for fair and shape–preserving surface fitting with
tensor–product B-splines, in: J.M. Pe˜ na (ed.), Shape Preserving Representations in Com-
puter Aided Design, Nova Science Publishers, New York 1999, 163–185.
10. J¨uttler, B.: Least-squares fitting of algebraic spline curves via normal vector estimation,
in: Cipolla, R., Martin, R.R. (eds.), The Mathematics of Surfaces IX, Springer, London,
263–280, 2000.
11. J¨uttler, B., and Felis, A.: Least–squares fitting of algebraic spline surfaces, Adv. Comp.
Math. 17 (2002), 135–152.
12. Mourrain, B., Pavone, J.-P., Subdivision methods for solving polynomial equations, Tech-
nical Report 5658, INRIA Sophia-Antipolis, 2005.
13. Sampson, P. D. Fitting conic sections to very scattered data: an iterative refinement of the
Bookstein algorithm, Computer Graphics and Image Processing 18 (1982), 97–108.
14. Sederberg, T., Chen F.: Implicitization using moving curves and surfaces. Siggraph 1995,
29, 301–308, (1995)
15. Shalaby, M. F., Thomassen, J. B., Wurm, E. M., Dokken, T., J¨uttler, B.: Piecewise ap-
proximate implicitization: Experiments using industrial data, in: Algebraic Geometry and
Geometric Modeling (Mourrain, B., Elkadi, M., Piene, R., eds.), Springer, in press.
16. Wurm, E., J¨uttler, B.: Approximate implicitization via curve fitting, in Kobbelt, L.,
Schr¨ oder, P., Hoppe, H. (eds.), Symposium on Geometry Processing, Eurographics / ACM
Siggraph, New York 2003, 240-247.
17. Wurm, E., Thomassen, J., J¨uttler, B., Dokken, T.: Comparative Benchmarking of Meth-
ods for Approximate Implicitization, in: Neamtu, M., and Lucian, M. (eds.), Geometric
Design and Computing, Nashboro Press, Brentwood 2004, 537–548.