Page 457 - Global Tectonics
P. 457
REFERENCES 439
Garnero, E.J. et al. (1998) Ultralow velocity zone at the Gordon, R.G. (1995) Present plate motions and plate boundaries.
core–mantle boundary. Geodyn. Ser. 28, 319–34. In Global Earth Physics: A Handbook of Physical Constants. AGU
Gass, I.G. (1980) The Troodos massif; its role in the unravel- Reference Shelf 1, pp. 66–87. American Geophysical Union,
ling of the ophiolite problem and its significance in the Washington, DC.
understanding of constructive plate margin processes. In Gordon, R.G. (1998) The plate tectonic approximation:
Panayistou, A. (ed.) Ophiolites, pp. 23–35. Geol. Surv. plate non-rigidity, diffuse plate boundaries, and global
Cyprus. plate reconstructions. Ann. Rev. Earth planet. Sci. 26,
Gehrels, G. (2002) Detrital zircon geochronology of the Taku 615–42.
terrane, southeast Alaska. Can. J. Earth Sci. 39, 921–31. Gordon, R.G. (2000) Diffuse oceanic plate boundaries: strain
Gente, P. et al. (1995) Characteristics and evolution of the segmen- rates, vertically averaged rheology, and comparisons with
tation of the Mid-Atlantic Ridge between 20°N and 24°N narrow plate boundaries and stable plate interiors. In Rich-
during the last 10 million years. Earth planet. Sci. Lett. 129, ards, M.A., Gordon, R.G. & van der Hilst, R.D. (eds) The
55–71. History and Dynamics of Plate Motions. Geophys. Monogr. Ser.
Gerbault, M., Davey, F. & Henrys, S. (2002) Three-dimensional 121, pp. 143–59. American Geophysical Union, Washington,
lateral crustal thickening in continental oblique collision: an DC.
example from the Southern Alps, New Zealand. Geophys. J. Int. Gordon, R.G. & Stein, S. (1992) Global tectonics and space
150, 770–9. geodesy. Science 256, 333–42.
Gerbault M., Martinod, J. & Hérail, G. (2005) Possible orogeny- Gradstein, F.M., Ogg, J.G. & Smith, A.G. (eds) (2004) A Geologic
parallel lower crustal flow and thickening in the Central Time Scale 2004. Cambridge University Press, Cambridge,
Andes. Tectonophysics 399, 59–72. 610pp.
Gerbi, C., Johnson, S.E. & Paterson, S.R. (2002) Implications Green, H.W. (1994) Solving the paradox of deep earthquakes.
of rapid, dike-fed pluton growth for host-rock strain Sci. Am. 271, 50–7.
rates and emplacement mechanisms. J. struct. Geol. 26, Green, W.V., Achauer, U. & Meyer, R.P. (1991) A three dimen-
583–94. sional seismic image of the crust and upper mantle beneath
Gilbert, H.J. & Sheehan, A.F. (2004) Images of crustal variations the Kenya rift. Nature 354, 199–203.
in the intermountain west. J. Geophys. Res. 109, B03306, Griffi n, W.L. et al. (2004) Archean crustal evolution in the north-
doi:10:1029/2003JB002730. ern Yilgarn Craton: U-Pb and Hf-isotope evidence from detri-
Gill, J.B. (1981) Orogenic Andesites and Plate Tectonics. Springer- tal zircons. Precambrian Res. 131, 231–82.
Verlag, Berlin. Gripp, A.E. & Gordon, R.G. (2002) Young tracks of hotspots and
Ginzburg, A. et al. (1979a) A seismic study of the crust and upper current plate velocities. Geophys. J. Int. 150, 321–61.
mantle of the Jordan–Dead Sea Rift and their transition toward Grove, T.L. & Parman, S.W. (2004) Thermal evolution of the
the Mediterranean Sea. J. geophys. Res. 84, 1569–82. Earth as recorded by komatiites. Earth planet. Sci. Lett. 219,
Ginzburg, A. et al. (1979b) Detailed structure of the crust and 173–87.
upper mantle along the Jordan–Dead Sea Rift. J. geophys. Res. Groves, D.I. et al. (2003) Gold deposits in metamorphic belts:
84, 5605–12. overview of current understanding, outstanding problems,
Glatzmaier, G.A. & Roberts, P.H. (1995) A three-dimensional self- future research, and exploration signifi cance. Econ. Geol. 98,
consistent computer simulation of a geomagnetic fi eld rever- 1–29.
sal. Nature 377, 203–9. Grow, J.A. (1973) Crustal and upper mantle structure of the
Glatzmaier, G.A. et al. (1999) The role of the Earth’s mantle in central Aleutian arc. Bull. geol. Soc. Am. 84, 2169–92.
controlling the frequency of geomagnetic reversals. Nature Guillot, S. et al. (1997) Eclogitic metasediments from the Tso
401, 885–90. Morari area (Ladakh, Himalaya): evidence for continental sub-
Glen, R.A. (2005) The Tasmanides of eastern Australia. In duction during India–Asia convergence. Contrib. Mineral.
Vaughan, A.P.M., Leat, P.T. & Pankhurst, R.J. (eds) Terrane Petrol. 128, 197–212
Processes at the Margins of Gondwana. Spec. Pub. geol. Soc. Lond. Guillou, L. & Jaupart, C. (1995) On the effect of continents on
246, 23–96. mantle convection. J. geophys. Res. 100, 24217–38.
Godfrey, N.J. et al. (2002) Lower crustal deformation beneath the Gulick, S.P.S. et al. (2004) Three-dimensional architecture of the
central Transverse Ranges, southern California. J. geophys. Res. Nankai accretionary prism’s imbricate thrust zone off Cape
107, doi:10.1029/2001JB000354. Muroto, Japan: prism reconstruction via en echelon thrust
Goes, S. & van der Lee, S. (2002) Thermal structure of the North propagation. J. Geophys. Res. 109, B02105, doi:10.1029/
American uppermost mantle inferred from seismic tomogra- 2003JB002654.
phy. J. geophys. Res. 107, 2050, doi:10.1029/2000JB000049. Gurnis, M. (1988) Large-scale mantle convection and the aggrega-
Goldsworthy, M., Jackson, J. & Haines, J. (2002) The continuity tion and dispersal of supercontinents. Nature 332, 695–9.
of active fault systems in Greece. Geophys. J. Int. 148, 596– Gurnis, M. (2001) Sculpting the Earth from inside out. Sci. Am.
618. 284, 40–47.
Gómez, E. et al. (2005) Development of the Colombian foreland– Gurnis, M., Müller, R.D. & Moresi, L. (1998) Cretaceous vertical
basin system as a consequence of diachronous exhumation of motion of Australia and the Australian–Antarctic discordance.
the Northern Andes. Bull. geol. Soc. Am. 117, 1272–92. Science 279, 1499–1504.

