Page 131 - Glucose Monitoring Devices
P. 131
132 CHAPTER 6 CGM sensor technology
[26] Laffel LM, Aleppo G, Buckingham BA, Forlenza GP, Rasbach LE, Tsalikian E, et al.
A practical approach to using trend arrows on the Dexcom G5 CGM system to manage
children and adolescents with diabetes. Journal of the Endocrine Society 2017;1(12):
1461e76. https://doi.org/10.1210/js.2017-00389.
[27] Lucisano JY, Routh TL, Lin JT, Gough DA. Glucose monitoring in individuals with dia-
betes using a long-term implanted sensor/telemetry system and model. IEEE Transac-
tions on Biomedical Engineering 2017;64(9):1982e93. https://doi.org/10.1109/
TBME.2016.2619333.
[28] Medtronic. Getting started with continuous glucose monitoring. 2018. Retrieved from:
www.medtronicdiabetes.com/sites/default/files/library/download-library/workbooks/
Tape_Tips_and_Site_Management.pdf.
[29] Paul HS, Schoenfisch MH. Nitric oxide-releasing subcutaneous glucose sensors. In:
In vivo glucose sensing. Hoboken, NJ, USA: John Wiley & Sons, Inc; 2009.
p. 243e67. https://doi.org/10.1002/9780470567319.ch9.
[30] Powell A. Harvard researchers help develop ‘smart’ tattoos e Harvard Gazette. 2017.
[31] Profusa’s Tiny implantable sensors keep working in patients even after four years j
Medgadget. 2018.
[32] Rao PV, Gan SH. Recent advances in nanotechnology-based diagnosis and treatments
of diabetes. Current Drug Metabolism 2015;16(5):371e5.
[33] Rodbard D. Continuous glucose monitoring: a review of successes, challenges, and
opportunities. Diabetes Technology and Therapeutics 2016;18(Suppl. 2):S3e13.
https://doi.org/10.1089/dia.2015.0417.
[34] Rohajn SY. Blood sugar crash. 2014. Retrieved from: https://www.technologyreview.
com/s/529026/blood-sugar-crash.
[35] Sharma S, El-Laboudi A, Reddy M, Jugnee N, Sivasubramaniyam S, El Sharkawy M,
et al. A pilot study in humans of microneedle sensor arrays for continuous glucose
monitoring. Analytical Methods 2018;10(18):2088e95. https://doi.org/10.1039/
C8AY00264A.
Ò
[36] Tsai A. Tips for tackling adhesive irritation and allergies: diabetes Forecast , 2017.
[37] Vaddiraju S, Burgess DJ, Tomazos I, Jain FC, Papadimitrakopoulos F. Technologies for
continuous glucose monitoring: current problems and future promises. Journal of Diabetes
Science and Technology 2010;4(6):1540e62. https://doi.org/10.1177/193229681000400632.
[38] Vaddiraju S, Kastellorizios M, Legassey A, Burgess D, Jain F, Papadimitrakopoulos F.
Needle-implantable, wireless biosensor for continuous glucose monitoring. In: 2015
IEEE 12th international conference on wearable and implantable body sensor networks
(BSN). IEEE; 2015. p. 1e5. https://doi.org/10.1109/BSN.2015.7299421.
[39] Wang G, He X, Wang L, Gu A, Huang Y, Fang B, et al. Non-enzymatic electrochemical
sensing of glucose. Microchimica Acta 2013;180(3e4):161e86. https://doi.org/
10.1007/s00604-012-0923-1.
[40] Wang X, Mdingi C, DeHennis A, Colvin AE. Algorithm for an implantable fluorescence
based glucose sensor. In: 2012 annual international conference of the IEEE engineering
in medicine and biology society; 2012. p. 3492e5. https://doi.org/10.1109/
EMBC.2012.6346718.
[41] What is the sensor adhesive made of? j Dexcom. n.d.
[42] Wro ´bel MS. Non-invasive blood glucose monitoring with Raman spectroscopy: pros-
pects for device miniaturization. IOP Conference Series: Materials Science and Engi-
neering 2016;104(1):012036. https://doi.org/10.1088/1757-899X/104/1/012036.