Page 132 - Glucose Monitoring Devices
P. 132
Commercial systems 133
[43] Yoo E-H, Lee S-Y. Glucose biosensors: an overview of use in clinical practice. Sensors
2010;10(5):4558e76. https://doi.org/10.3390/s100504558.
[44] Heller A, Feldman B. Electrochemical glucose sensors and their applications in diabetes
management. Chemical Reviews 2008;108(7):2482e505.
[45] James TD, Phillips MD, Shinkai S. Boronic acids in saccharide recognition. Royal So-
ciety of Chemistry; 2006.
[46] Kim J, Campbell AS, Wang J. Wearable non-invasive epidermal glucose sensors: a
review. Talanta 2018;177:163e70.
[47] Nichols SP, Koh A, Storm WL, Shin JH, Schoenfisch MH. Biocompatible materials for
continuous glucose monitoring devices. Chemical Reviews 2013;113(4):2528e49.
[48] Jia W. Continuous Glucose Monitoring. 2018. https://doi.org/10.1007/978-981-10-
7074-7.
[49] Rossetti P, Bondia J, Veh J, Fanelli CG. Estimating plasma glucose from interstitial
glucose: the issue of calibration algorithms in commercial continuous glucose moni-
toring devices. sensors 2010;10:10936e52.
[50] Schuhmann W, Ohara TJ, Schmidt HL, Heller A. Electron transfer between glucose ox-
idase and electrodes via redox mediators bound with flexible chains to the enzyme
surface. Journal of the American Chemical Society 1991;113(4):1394e7.
[51] Harris JM, Reyes C, Lopez GP. Common causes of glucose oxidase instability in in vivo
biosensing: a brief review. Journal of Diabetes Science and Technology 2013;7(4):
1030e8.
[52] Lee H, Hong YJ, Baik S, Hyeon T, Kim DH. Enzyme based glucose sensor: from inva-
sive to wearable device. Adv. Healthcare Mater. 2018;7:1701150.
[53] Croce R, Vaddiraju S, Kondo J, Wang Y, Zuo L, Zhu K, Islam SK, Burgess D, Jain FC,
Papadimitrakopoulos F. A miniaturized transcutaneous system for continuous glucose
monitoring. Biomedical Microdevices 2013;15:151e60.
[54] Gough DA, Lucisano JY, Tse PH. Two-dimensional enzyme electrode sensor for
glucose. Anal Chem 1985;57(12):2351e7.
[55] Tse PHS, Leypoldt JK, Gough DA. Determination of the intrinsic kinetic constants of
immobilized glucose oxidase and catalase. Biotech Bioengin 1987;29:696e704.
[56] Chinnadayyala SR, Park KD, Cho S. Editors’ choicedreviewdin vivo and in vitro
microneedle based enzymatic and non-enzymatic continuous glucose monitoring
biosensors. ECS Journal of Solid State Science and Technology 2018;7(7):
Q3159e71. https://doi.org/10.1149/2.0241807jss.
[57] udge K, Morrow L, Lastovich AG, Kurisko D, Keith S, Hartsell J, Roberts B, McVey E,
Weidemaier K, Win K, Hompesch M. Continuous glucose monitoring using a novel
glucose/galactose binding protein: results of a 12-hour feasibility study with the becton
dickinson glucose/galactose binding protein sensor. Diabetes Technology & Therapeu-
tics 2011;13:309e17. https://doi.org/10.1089/dia.2010.0130.
[58] Badugu R, Lakowicz JR, Geddes CD. A glucose sensing contact lens: A non-invasive
technique for continuous physiological glucose monitoring. J Fluoresc 2003;13(5):
371e4.
[59] Liao Y, Yao H, Parviz B, Otis B. A 3mW wirelessly powered CMOS glucose sensor for
an active contact lens. San Francisco, CA: 2011 IEEE International Solid-State Circuits
Conference; 2011. p. 38e40. https://doi.org/10.1109/ISSCC.2011.5746209.
[60] Sen DK, Sarin GS. Tear glucose levels in normal people and in diabetic patients. Br J
Ophthalmol 1980;64(9):693e5 [PMC free article] [PubMed].