Page 318 - Glucose Monitoring Devices
P. 318
References 325
[43] Taleb N, Haidar A, Messier V, Gingras V, Legault L, Rabasa-Lhoret R. Glucagon in arti-
ficial pancreas systems: potential benefits and safety profile of future chronic use. Dia-
betes, Obesity and Metabolism 2017;19(1):13e23.
[44] Russell SJ, et al. Outpatient glycemic control with a bionic pancreas in type 1 diabetes.
The New England Journal of Medicine 2014;371(4):313e25.
[45] Haidar A, Legault L, Messier V, Mitre TM, Leroux C, Rabasa-Lhoret R. Comparison of
dual-hormone artificial pancreas, single-hormone artificial pancreas, and conventional
insulin pump therapy for glycaemic control in patients with type 1 diabetes: an open-
label randomised controlled crossover trial. Lancet Diabetes and Endocrinology
2015;3(1):17e26.
[46] Ellingsen C, et al. Safety constraints in an artificial pancreatic beta cell: an implemen-
tation of model predictive control with insulin on board. Journal of Diabetes Science
and Technology 2009;3(3):536e44.
[47] Rossetti P, et al. Closed-loop control of postprandial glycemia using an insulin-on-board
limitation through continuous action on glucose target. Diabetes Technology and Ther-
apeutics 2017;19(6):355e62.
[48] Hajizadeh I, et al. Adaptive and personalized plasma insulin concentration estimation
for artificial pancreas systems. Journal of Diabetes Science and Technology 2018;
12(3):639e49.
[49] Steil GM, Rebrin K. Closed loop system for controlling insulin infusion. Google Pat-
ents. 2008.
[50] Steil GM. Algorithms for a closed-loop artificial pancreas: the case for proportional-
integral-derivative control. Journal of Diabetes Science and Technology 2013;7(6):
1621e31.
[51] Bequette BW. Algorithms for a closed-loop artificial pancreas: the case for model pre-
dictive control. Journal of Diabetes Science and Technology 2013;7(6):1632e43.
[52] Hovorka R, Canonico V, Chassin LJ, Haueter U, Massi-Benedetti M, Orsini Federici M,
Pieber TR, Schaller HC, Schaupp L, Vering. Nonlinear model predictive control of
glucose concentration in subjects with type 1 diabetes. Physiological Measurement
2005;25(4):905e20.
[53] Cinar A, Turksoy K, Hajizadeh I. Multivariable artificial pancreas method and system.
2016.
[54] Biegler LT, Yang X, Fischer GAG. Advances in sensitivity-based nonlinear model pre-
dictive control and dynamic real-time optimization. Journal of Process Control 2015;30:
104e16.
[55] Yu ZJ, Biegler LT. Advanced-step multistage nonlinear model predictive control. IFAC-
PapersOnLine 2018;51(20):122e7.
[56] Oberdieck R, Pistikopoulos EN. Explicit hybrid model-predictive control: the exact
solution. Automatica 2015;58:152e9.
[57] Rivotti P, Pistikopoulos EN. A dynamic programming based approach for explicit
model predictive control of hybrid systems. Computers and Chemical Engineering
2015;72:126e44.
[58] Cao Z, Gondhalekar R, Dassau E, Doyle FJ. Extremum seeking control for personalized
zone adaptation in model predictive control for type 1 diabetes. IEEE Transactions on
Biomedical Engineering Aug. 2018;65(8):1859e70.
[59] Eren-Oruklu M, Cinar A, Rollins DK, Quinn L. Adaptive system identification for esti-
mating future glucose concentrations and hypoglycemia alarms. Automatica 2012;
48(8):1892e7.