Page 357 - Glucose Monitoring Devices
P. 357

364    Index




                         Retrofitting algorithm (Continued)   measurement error. See Measurement error
                            quasi-continuous reconstructed profile, 225  noninsulin-treated T2D, 20
                            selection matrix, 225e226        shortcomings, 19e21
                           data preprocessing, 220f, 234e237  type 1 diabetes
                           outpatient study data               continuous subcutaneous insulin infusion
                            absolute and relative absolute errors, 229e230  (CSII), 6e7
                            accuracy outcomes metrics and statistical  Diabetes Control and Complications Trial
                              analysis, 228                     (DCCT), 5e6
                            Clarke’s error grid, 230, 230f     glucometer, 5e6
                            original dataset, 227              glycated hemoglobin level, 5e7
                            outpatient-like dataset, 228       insulin injections, 5e6
                            statistical analysis, 228        type 2 diabetes (T2D)
                            test-set data, 229f                Action to Control Cardiovascular Risk in Dia-
                           problem formulation                  betes (ACCORD) trial, 7e8
                            calibration errors, 220e221        Diabetes Glycemic Education and Monitoring
                            notation, 221e222                   (DiGEM) randomized controlled trial, 8e9
                            semiblind deconvolution problem, 221f  ESMON study, 8e9
                            sensor sensitivity, 220e221        HbA1c-based control group, 9e11
                            static, linear, time-varying deformation,  meta-analyses, 11e12
                              220e221                          Monitor Trial, 8e9
                            two-compartment model, 220e221     noninsulin-treated people, 8e9
                           real-life adjunctive data           nonpharmacologically treated participants,
                            absolute deviation and absolute relative  7e8
                              deviation, 231e232, 232f         pooled analysis, 11e12
                            accuracy outcomes metrics and statistical  prospective randomized trial, 9e11
                              analysis, 231                    randomized controlled trials, 9e11
                            original dataset, 231              Role of Self-Monitoring of Blood Glucose and
                            patient-level analysis, 232, 233f   Intensive Education in Patients with Type 2
                            real-life-like datasets, 231        Diabetes Not Receiving Insulin (ROSES)
                           vs. references, 233e234, 235f        trial, 9e11
                           retrospective Bayesian CGM recalibration  ROSSO study, 7e8
                            autoregressive (AR) process, 225   structured SMBG, 9e11
                            Bayesian estimate, 224             UK Prospective Diabetes Study (UKPDS),
                            calibration-error model, 224        7e8
                            data portion, 223               Semiblind deconvolution problem, 221f
                            population distribution, 224    Senseonics, 150
                         Role of Self-Monitoring of Blood Glucose and  Sensor-augmented pump (SAP) therapy, 151e152
                              Intensive Education in Patients with Type  , 282, 294, 330
                              2 Diabetes Not Receiving Insulin  Severe hypoglycemia events (SHE), 55
                              (ROSES) trial, 9e11           Single-zone Gaussian model, 95
                         Run-to-run (R2R) control schemes, 307e309  Smoothness relative gain (SRG) index, 213e215
                                                            Structured Testing Program study, 9e11
                         S                                  Subcutaneous sensor modeling, 249e251
                         Self-monitoring of blood glucose (SMBG)  Subspace-based state-space system identification
                           adherence, 20                        techniques
                           analytical accuracy, 43           block Hankel matrix, 304
                           blood glucose monitoring systems (BGMSs), 21  discrete-time state-space model, 303e304
                           clinical accuracy, 43             Hankel matrices, 304
                           continuous glucose monitoring (CGM), 20e21  multioutput output-error state-space (MOESP),
                           guidelines, 12e14, 14te19t           305
                           intermittent, 112f                orthogonal projection matrix, 304e305
                           limitations, 137                  recursive system identification
   352   353   354   355   356   357   358   359