Page 355 - Glucose Monitoring Devices
P. 355

362    Index




                         Measurement error (Continued)         dataset description, 189, 190f
                            model validation, 93e95, 94f       performance assessment, 192
                            parameters and second-order statistical  performance metrics, 194e196, 194f, 195t
                              description, 93t                 posterior distributions, 196, 197f
                            scatter plots, 91f                 prior derivation, 190e191
                            YSI and SMBG-YSI preprocessing, 89e90  interstitial concentration, 178
                           random error, 79                  Kalman filter-based approaches, 180e181
                           in silico clinical trials (ISCTs), 80e81  linear matrix inequalities techniques, 182
                           state-of-the-art modeling method  linear time-invariant system, 178
                            constant-SD zones identification, 85  local dynamics models, 181
                            maximum-likelihood fitting, 85e87  low-pass filtering nature, 178e179
                            model validation, 87e88, 95t     multistep calibration algorithm, 182
                            nonparametric approaches, 84     nonlinear and time-dependent relationship, 173
                            parametric approach, 84          parametrization, 177e178
                            training and test sets, 85       patients’ discomfort, 173
                           systematic error, 79              problem statement
                           type 1 diabetes (T1D), 80           calibrated glucose profile, 175
                         Medtronic Guardian Connect continuous glucose  calibration function, 175
                              monitoring (CGM) systems, 128    electrical current profile, 176f
                         Medtronic’s SmartGuard self-adjusting insulin  electrical current signal, 174
                              delivery system, 149             estimate quality, 176
                         Medtrum’s A6 Touchcare system, 149    glucose concentration profile, 174
                         Menarini Glucoday system, 213, 215f   linear regression, 175
                         Metabolic models, 58                  mathematical model, 174
                         Metabolic variability, 58             measurement noise, 175
                         Microneedle-array sensors, 116e117    numerical determination, 175
                         Minimally invasive continuous glucose moni-  output, 177f
                              toring (CGM) sensor calibration  sensor sensitivity, 175
                           autoregressive (AR) models, 181     two-point calibration, 175
                           Bayesian calibration algorithm    recursive approaches, 183
                            BG-to-IG kinetics, 187e188       time variability, 179, 179f
                            current signal calibration, 189  MiniMed 670G system
                            dynamic system, 185f             adjunctive agents, 339
                            fixed time-domain functions, 185  auto mode, 337e338
                            glucose concentration, 184       bihormonal systems, 339
                            low-pass filtering nature, 184    challenges, 339e340
                            model parameters, 185e189        forced system, 338
                            parameter initialization, 186    Guardian sensor 3, 336e337
                            parameters vector, 185           hotel-based study, 335e336
                            parameter update, 189            hybrid closed-loop systems, 339e340
                            physical domains, 184            insulin pump, 337
                            posteriori estimate, 186         3-month single-arm study, 336
                            SMBG sample, 188                 Nightscout Project, 340e346
                            temporal domain of validity, 185  outpatient studies, 335e336
                           blood glucose-to-interstitial glucose (BG-to-IG)  patient considerations, 346
                              kinetics, 176e177, 178f, 180   pediatric population, 336
                           challenges, 183                   research unit-based study, 335
                           computational complexity, 182     retrospective analysis, 338
                           deconvolution-based Bayesian approach, 182  MiniMed predictive low glucose management
                           Dexcom G4 Platinum (DG4P) CGM sensor  (PLGM) system, 278
                            calibrated CGM profiles, 192e194, 193f  Model predictive control (MPC) algorithms,
                            calibration scenarios, 191          294e295, 297e299, 333
   350   351   352   353   354   355   356   357   358   359