Page 354 - Glucose Monitoring Devices
P. 354

Index    361




                   type 1 diabetes patients, 63, 63f  Automation to Simulate Pancreatic Insulin
                   worst-case costing, 68, 69f           Response (ASPIRE) study, 330
                  In silico accuracy study            clinical studies, 260e266
                   behavioral models, 65, 65f         concept, 259f
                   clinical outcomes, 66, 67f         cost-effectiveness analysis, 268
                   design, 64f                        interrupted insulin delivery, 259
                   long-term behavioral adaptations, 70  limitations, 268e269
                   meter models, 64                   preset glucose threshold, 330
                   regression model, 66e67            rapid-acting insulin analogs, 260
                   simulation, 59e60, 60f             real-life evidence, 267e268
                   UVA/Padova simulator, 63           regulatory approval, 330e331
                  In silico clinical trials (ISCTs)   retrospective review, 331
                   advantages, 80e81
                   limitation, 81                   M
                   physiological response, 81       Markov cohort modeling approach, 61, 65
                   simulation platforms, 81         Maximum-likelihood (ML) fitting, 84e87
                  Insulin lispro, 260                 exponential PDF model, 86e87
                  Insulin pumps, 124e125              log-likelihood function, 86
                  Insulin-to-carbohydrate ratio, 309  normality test, 85e86
                  Integrated random walk model, 207   parameters, 87
                  International Diabetes Federation (IDF), 257  skew-normal PDF, 85e86
                  Interstitial glucose (IG) fluctuations, 159e160  Mean absolute difference (MAD), 87
                  Iterative learning control (ILC), 309e311  Mean absolute relative difference (MARD),
                   autoregressive exogenous input (ARX) model,  60e61, 192, 276, 336e337
                       310e311                      Measurement error
                   feedback control, 310              Bayer Contour Next (BCN)
                   model predictive iterative learning control  dataset, 95e96
                       (MPILC) algorithm, 311           histograms, 98e99, 99f
                   objective, 309e310                   model development, 97e99, 97f
                   P-type, 310                          model validation, 99e102, 102t
                   real-time information, 310           parameters and second-order statistical
                   simple formulation, 309e310           description, 100t
                   tracking error, 309e310              T1D patient decision simulator, 103e104, 103f
                                                        YSI and SMBG-YSI preprocessing, 96e97
                  J                                   blood glucose (BG) concentration, 80
                  Juvenile Diabetes Research Foundation (JDRF),  factors influencing, 79e80
                       328e329                        FDA guidance, 80
                                                      ISO 15197:2003 standard, 80
                  K                                   literature models
                  Kalman filter, 277                     bivariate kernel density model, 82e83
                  Kalman filter-based approaches, 180e181  Gaussian model, 82e83
                  Ketoacidosis, 259                     Johnson distribution PDF models, 83e84
                  KolmogoroveSmirnov (KS) test, 87e88, 95  probability density function (PDF) models,
                                                         82e83
                  L                                     relative error, 82, 83f
                  Linear matrix inequalities techniques, 182  two-zone SMBG error model, 83e84
                  Linear minimum variance estimation problem,  modeling, 80e81
                       208                            One Touch Ultra 2 (OTU2)
                  Linear regression model, 61           absolute and relative error, 91e92, 92f
                  Low blood glucose index (LBGI), 60    dataset, 88e89, 89f
                  Low glucose suspend (LGS) system,     histograms, 92, 93f
                       281e282                          model development, 90e92
   349   350   351   352   353   354   355   356   357   358   359