Page 149 - Handbook Of Integral Equations
P. 149

x

                                  λ(x+t)   2λt     λt
               11.   y(x)+     Ae      – Ae   + Be   y(t) dt = f(x).
                            a
                                         λx
                                                λt
                     The transformation z = e , τ = e , Y (z)= y(x) leads to an equation of the form 2.1.5:
                                        z


                                Y (z)+    B 1 (z – τ)+ A 1 Y (τ) dτ = F(z),  F(z)= f(x),
                                       b
                                                λa
                     where A 1 = B/λ, B 1 = A/λ, b = e .
                             x

                                  λ(x+t)   2λt     λt
               12.   y(x)+     Ae      + Be   + Ce   y(t) dt = f(x).
                            a
                                         λx
                                                λt
                     The transformation z = e , τ = e , Y (z)= y(x) leads to an equation of the form 2.1.6:
                                        z

                                Y (z) –  (A 1 z + B 1 τ + C 1 )Y (τ) dτ = F(z),  F(z)= f(x),
                                       b
                                                             λa
                     where A 1 = –A/λ, B 1 = –B/λ, C 1 = –C/λ, b = e .
                             x

                                 λ(x–t)      µx+λt    λx+µt
               13.   y(x)+     λe     + A µe      – λe       y(t) dt = f(x).
                            a
                     This is a special case of equation 2.9.23 with h(t)= A.
                        Solution:
                                                           x
                                              1   d           F(t)       e 2λt
                                       y(x)=         Φ(x)               dt ,
                                             e λx  dx     a   e λt  t  Φ(t)
                                                 λ – µ  (λ+µ)x
                                                                        x
                                     Φ(x)=exp A      e      ,  F(x)=    f(t) dt.
                                                 λ + µ                a
                             x

                                 –λ(x–t)     λx+µt     µx+λt
               14.   y(x) –    λe      + A µe      – λe      y(t) dt = f(x).
                            a
                     This is a special case of equation 2.9.24 with h(x)= A.
                        Assume that f(a) = 0. Solution:
                                     x
                                                                      x
                                                            d   e 2λx   f(t)
                              y(x)=    w(t) dt,  w(x)= e –λx                  Φ(t) dt ,
                                                           dx   Φ(x)     e λt
                                    a                                a       t
                                                          λ – µ  (λ+µ)x

                                              Φ(x)=exp A      e      .
                                                         λ + µ
                               x
                                 λ(x–t)    βt    µx+λt   λx+µt
               15.   y(x)+     λe     + Ae   µe      – λe       y(t) dt = f(x).
                            a
                                                                 βt
                     This is a special case of equation 2.9.23 with h(t)= Ae .
                        Solution:
                                                           x
                                                  d           F(t)       e (2λ+β)t
                                           –(λ+β)x
                                     y(x)= e         Φ(x)                 dt ,
                                                 dx       a   e λt  t  Φ(t)
                                                                           x
                                                λ – µ  (λ+µ+β)x
                                  Φ(x)=exp A          e       ,  F(x)=     f(t) dt.
                                              λ + µ + β                  a

                 © 1998 by CRC Press LLC









               © 1998 by CRC Press LLC
                                                                                                             Page 128
   144   145   146   147   148   149   150   151   152   153   154