Page 150 - Handbook Of Integral Equations
P. 150

x

                                 –λ(x–t)   βx     λx+µt   µx+λt
               16.   y(x) –    λe      + Ae   µe      – λe       y(t) dt = f(x).
                            a
                                                                 βx
                     This is a special case of equation 2.9.24 with h(x)= Ae .
                        Assume that f(a) = 0. Solution:
                                                                      x
                                   x
                                                          d  e (2λ+β)x    f(t)
                           y(x)=    w(t) dt,   w(x)= e –λx                (λ+β)t  Φ(t) dt ,
                                  a                      dx   Φ(x)   a   e     t
                                                         λ – µ  (λ+µ+β)x

                                           Φ(x)=exp A          e       .
                                                       λ + µ + β
                               x
                                   (λ+1)x+t     λx+2t    λx+t     t
               17.   y(x)+     ABe        – ABe      – Ae    – Be y(t) dt = f(x).
                            a
                                               t
                                         x
                     The transformation z = e , τ = e , Y (z)= y(x) leads to an equation of the form 2.1.56:
                                           z
                                                λ+1     λ      λ
                                  Y (z)+   ABz     – ABz τ – Az – B Y (τ) dτ = F(z),
                                         b
                                            a
                     where F(z)= f(x) and b = e .
                               x
                                   x+λt       (λ+1)t   λt     t
               18.   y(x)+     ABe      – ABe     + Ae   + Be y(t) dt = f(x).
                            a
                                                t
                                         x
                     The transformation z = e , τ = e , Y (z)= y(x) leads to an equation of the form 2.1.57 (in
                     which λ is substituted by λ – 1):
                                          z
                                                λ–1     λ     λ–1
                                 Y (z)+    ABzτ    – ABτ + Aτ    + B Y (τ) dτ = F(z),
                                        b
                                            a
                     where F(z)= f(x) and b = e .
                                n
                               x
               19.   y(x)+         A k e λ k (x–t)  y(t) dt = f(x).
                            a
                               k=1
                     1 . This integral equation can be reduced to an nth-order linear nonhomogeneous ordinary
                      ◦
                     differential equation with constant coefficients. Set
                                                        x
                                               I k (x)=  e λ k (x–t) y(t) dt.               (1)
                                                      a
                     Differentiating (1) with respect to x yields

                                                           x
                                                            λ k (x–t)
                                            I = y(x)+ λ k  e     y(t) dt,                   (2)
                                             k
                                                         a
                     where the prime stands for differentiation with respect to x. From the comparison of (1)
                     with (2) we see that

                                            I = y(x)+ λ k I k ,  I k = I k (x).             (3)
                                             k
                        The integral equation can be written in terms of I k (x) as follows:
                                                      n

                                                y(x)+   A k I k = f(x).                     (4)
                                                      k=1



                 © 1998 by CRC Press LLC









               © 1998 by CRC Press LLC
                                                                                                             Page 129
   145   146   147   148   149   150   151   152   153   154   155