Page 154 - Handbook Of Integral Equations
P. 154

x

                                     2
                                  2
               30.   y(x)+ A    (x – t )e λ(x–t) y(t) dt = f(x).
                              0
                     The substitution u(x)= e –λx y(x) leads to an equation of the form 2.1.11:
                                                    x
                                                         2
                                                      2
                                         u(x)+ A    (x – t )u(t) dt = f(x)e –λx .
                                                  0
                                x
                                     n λ(x–t)
               31.   y(x)+ A    (x – t) e   y(t) dt = f(x),  n =1, 2, ...
                              a
                     Solution:
                                                          x
                                            y(x)= f(x)+    R(x – t)f(t) dt,
                                                        a
                                                 n
                                          1  λx
                                 R(x)=       e     exp(σ k x) σ k cos(β k x) – β k sin(β k x) ,
                                        n +1
                                                k=0
                     where
                                   1    
  2πk                1   
  2πk
                         σ k = |An!| n+1 cos   ,    β k = |An!| n+1 sin         for  A <0,
                                          n +1                      n +1
                                   1    
  2πk + π            1   
  2πk + π
                         σ k = |An!| n+1 cos      ,  β k = |An!| n+1 sin        for  A >0.
                                           n +1                      n +1
                              x
                                exp[λ(x – t)]
               32.   y(x)+ b      √        y(t) dt = f(x).
                             a      x – t
                     Solution:
                                                           x
                                                                2
                                    y(x)= e λx  F(x)+ πb 2  exp[πb (x – t)]F(t) dt ,
                                                         a
                     where
                                                             x
                                                               e –λt f(t)
                                           F(x)= e –λx f(x) – b  √    dt.
                                                            a    x – t
                              x

                                      k λ(x–t)
               33.   y(x)+ A    (x – t)t e   y(t) dt = f(x).
                              a
                     The substitution u(x)= e –λx y(x) leads to an equation of the form 2.1.49:
                                                   x

                                                         k
                                         u(x)+ A    (x – t)t u(t) dt = f(x)e –λx .
                                                  a
                              x

                                     k
                                  k
               34.   y(x)+ A    (x – t )e λ(x–t) y(t) dt = f(x).
                              a
                     The substitution u(x)= e –λx y(x) leads to an equation of the form 2.1.52:
                                                    x
                                                     k
                                                         k
                                         u(x)+ A    (x – t )u(t) dt = f(x)e –λx .
                                                  a
                              x
                                e µ(x–t)
               35.   y(x) – λ        α  y(t) dt = f(x),  0 < α <1.
                             0  (x – t)
                     Solution:
                                       x                                 ∞           1–α    n
                                                                            λΓ(1 – α)x
                                                                      µx
                        y(x)= f(x)+    R(x – t)f(t) dt,  where R(x)= e                    .
                                     0                                       xΓ n(1 – α)
                                                                        n=1
                 © 1998 by CRC Press LLC









               © 1998 by CRC Press LLC
                                                                                                             Page 133
   149   150   151   152   153   154   155   156   157   158   159