Page 156 - Handbook Of Integral Equations
P. 156

x

               2.    y(x) – A   cosh(λt)y(t) dt = f(x).
                             a
                     This is a special case of equation 2.9.2 with g(x)= A and h(t) = cosh(λt).
                        Solution:

                                               x
                                                           A
                              y(x)= f(x)+ A    cosh(λt)exp   sinh(λx) – sinh(λt)  f(t) dt.
                                             a             λ
                                x
               3.    y(x)+ A    cosh[λ(x – t)]y(t) dt = f(x).
                              a
                     This is a special case of equation 2.9.28 with g(t)= A. Therefore, solving the original integral
                     equation is reduced to solving the second-order linear nonhomogeneous ordinary differential
                     equation with constant coefficients

                                                   2
                                                             2
                                        y     + Ay – λ y = f xx  – λ f,  f = f(x),


                                               x
                                         xx
                     under the initial conditions

                                          y(a)= f(a),  y (a)= f (a) – Af(a).

                                                       x      x
                        Solution:
                                                          x
                                            y(x)= f(x)+    R(x – t)f(t) dt,
                                                        a

                                               A 2
                                          1                                   2  1  2
                              R(x)=exp – Ax       sinh(kx) – A cosh(kx) ,  k =  λ + A .
                                         2     2k                                4
                             x   n


               4.    y(x)+         A k cosh[λ k (x – t)] y(t) dt = f(x).
                            a
                                k=1
                     This equation can be reduced to an equation of the form 2.2.19 by using the identity
                     cosh z ≡  1    e + e –z    . Therefore, the integral equation in question can be reduced to a
                                z
                             2
                     linear nonhomogeneous ordinary differential equation of order 2n with constant coefficients.
                              x
                                cosh(λx)
               5.    y(x) – A           y(t) dt = f(x).
                             a  cosh(λt)
                     Solution:
                                                       x
                                                              cosh(λx)
                                        y(x)= f(x)+ A   e A(x–t)      f(t) dt.
                                                      a       cosh(λt)
                                x  cosh(λt)
               6.    y(x) – A           y(t) dt = f(x).
                             a cosh(λx)
                     Solution:
                                                        x     cosh(λt)
                                        y(x)= f(x)+ A   e A(x–t)      f(t) dt.
                                                      a       cosh(λx)
                              x

                                             m
                                    k
               7.    y(x) – A   cosh (λx) cosh (µt)y(t) dt = f(x).
                             a
                                                                   k                 m
                     This is a special case of equation 2.9.2 with g(x)= A cosh (λx) and h(t) = cosh (µt).

                 © 1998 by CRC Press LLC









               © 1998 by CRC Press LLC
                                                                                                             Page 135
   151   152   153   154   155   156   157   158   159   160   161