Page 155 - Handbook Of Integral Equations
P. 155

x

                                       2   2
               36.   y(x)+ A    exp λ(x – t ) y(t) dt = f(x).
                              a
                     Solution:
                                                   x

                                                           2  2
                                    y(x)= f(x) – A  exp λ(x – t ) – A(x – t) f(t) dt.
                                                  a
                              x

                                       2    2
               37.   y(x)+ A    exp λx + βt y(t) dt = f(x).
                              a
                     In the case β = –λ, see equation 2.2.36. This is a special case of equation 2.9.2 with
                                   2                2
                     g(x)= –A exp λx ) and h(t)=exp βt .
                              ∞        √


               38.   y(x)+ A     exp –λ t – x y(t) dt = f(x).
                              x
                                                                       √

                     This is a special case of equation 2.9.62 with K(x)= A exp –λ –x .
                              x

                                       µ   µ
               39.   y(x)+ A    exp λ(x – t ) y(t) dt = f(x),  µ >0.
                              a
                                                                      µ                 µ
                     This is a special case of equation 2.9.2 with g(x)= –A exp λx  and h(t)=exp –λt .
                        Solution:
                                                    x
                                                           µ  µ
                                    y(x)= f(x) – A  exp λ(x – t ) – A(x – t) f(t) dt.
                                                  a
                                x  1  
  t
               40.   y(x)+ k      exp –λ    y(t) dt = g(x).
                             0  x        x
                     This is a special case of equation 2.9.71 with f(z)= ke –λz .
                                                               n
                        For a polynomial right-hand side, g(x)=  N    A n x , a solution is given by
                                                         n=0
                                       N                               n
                                            A n   n                 –λ
                                                              n!          n!  1
                                 y(x)=           x ,    B n =  n+1  – e      n–k+1  .
                                          1+ kB n            λ            k! λ
                                       n=0                            k=0
               2.3. Equations Whose Kernels Contain Hyperbolic
                      Functions

                 2.3-1. Kernels Containing Hyperbolic Cosine


                                x
               1.    y(x) – A   cosh(λx)y(t) dt = f(x).
                             a
                     This is a special case of equation 2.9.2 with g(x)= A cosh(λx) and h(t)=1.
                        Solution:
                                              x
                                                           A
                              y(x)= f(x)+ A    cosh(λx)exp   sinh(λx) – sinh(λt)  f(t) dt.
                                            a              λ



                 © 1998 by CRC Press LLC









               © 1998 by CRC Press LLC
                                                                                                             Page 134
   150   151   152   153   154   155   156   157   158   159   160