Page 158 - Handbook Of Integral Equations
P. 158

x

               15.   y(x) – A   sinh(λt)y(t) dt = f(x).
                             a
                     This is a special case of equation 2.9.2 with g(x)= A and h(t) = sinh(λt).
                        Solution:

                                              x
                                                          A
                              y(x)= f(x)+ A    sinh(λt)exp   cosh(λx) – cosh(λt)  f(t) dt.
                                            a             λ
                                x
               16.   y(x)+ A    sinh[λ(x – t)]y(t) dt = f(x).
                              a
                     This is a special case of equation 2.9.30 with g(x)= A.
                      ◦
                     1 . Solution with λ(A – λ)>0:
                                        Aλ     x
                            y(x)= f(x) –       sin[k(x – t)]f(t) dt,  where  k =  λ(A – λ).
                                         k   a
                     2 . Solution with λ(A – λ)<0:
                      ◦
                                        Aλ     x
                            y(x)= f(x) –      sinh[k(x – t)]f(t) dt,  where  k =  λ(λ – A).
                                        k   a

                     3 . Solution with A = λ:
                      ◦
                                                           x

                                            y(x)= f(x) – λ 2  (x – t)f(t) dt.
                                                          a
                                x
                                    3
               17.   y(x)+ A    sinh [λ(x – t)]y(t) dt = f(x).
                              a
                                       3    1        3
                     Using the formula sinh β =  sinh 3β –  sinh β, we arrive at an equation of the form 2.3.18:
                                            4        4
                                       x
                                          1               3
                               y(x)+      A sinh 3λ(x – t) – A sinh[λ(x – t)] y(t) dt = f(x).
                                         4                4
                                     a
                             x


               18.   y(x)+     A 1 sinh[λ 1 (x – t)] + A 2 sinh[λ 2 (x – t)] y(t) dt = f(x).
                            a
                     1 . Introduce the notation
                      ◦
                                      x                           x
                                I 1 =  sinh[λ 1 (x – t)]y(t) dt,  I 2 =  sinh[λ 2 (x – t)]y(t) dt,
                                     a                          a
                                      x                           x
                               J 1 =   cosh[λ 1 (x – t)]y(t) dt,  J 2 =  cosh[λ 2 (x – t)]y(t) dt.
                                     a                          a
                     Successively differentiating the integral equation four times yields (the first line is the original
                     equation)

                            y + A 1 I 1 + A 2 I 2 = f,  f = f(x),                           (1)
                            y + A 1 λ 1 J 1 + A 2 λ 2 J 2 = f ,                             (2)


                                                 x
                             x
                                                           2
                                                   2


                            y xx  +(A 1 λ 1 + A 2 λ 2 )y + A 1 λ I 1 + A 2 λ I 2 = f ,      (3)
                                                           2
                                                   1
                                                                 xx
                                                             3
                                                     3
                            y xxx  +(A 1 λ 1 + A 2 λ 2 )y + A 1 λ J 1 + A 2 λ J 2 = f xxx ,  (4)



                                                             2
                                                     1
                                              x
                                                             3
                                                       3
                                                                             4
                                                                     4


                            y xxxx  +(A 1 λ 1 + A 2 λ 2 )y     +(A 1 λ + A 2 λ )y + A 1 λ I 1 + A 2 λ I 2 = f xxxx .  (5)
                                                                     1
                                                                             2
                                                       1
                                               xx
                                                             2
                 © 1998 by CRC Press LLC
               © 1998 by CRC Press LLC
                                                                                                             Page 137
   153   154   155   156   157   158   159   160   161   162   163