Page 161 - Handbook Of Integral Equations
P. 161

x

               23.   y(x)+ A    t sinh[λ(x – t)]y(t) dt = f(x).
                              a
                     This is a special case of equation 2.9.30 with g(t)= At.
                        Solution:
                                               Aλ     x
                                   y(x)= f(x)+       t u 1 (x)u 2 (t) – u 2 (x)u 1 (t) f(t) dt,
                                               W   a
                     where u 1 (x), u 2 (x) is a fundamental system of solutions of the second-order linear ordinary
                     differential equation u     + λ(Ax – λ)u = 0, and W is the Wronskian.
                                      xx
                        The functions u 1 (x) and u 2 (x) are expressed in terms of Bessel functions or modified
                     Bessel functions, depending on the sign of Aλ, as follows:
                        if Aλ > 0, then
                                               √                          √
                               u 1 (x)= ξ 1/2 J 1/3 3 2  Aλ ξ 3/2  ,  u 2 (x)= ξ 1/2  Y 1/3 3 2  Aλ ξ 3/2  ,
                                              W =3/π,    ξ = x – (λ/A);

                        if Aλ < 0, then
                                             √                            √
                              u 1 (x)= ξ 1/2  I 1/3 3 2  –Aλ ξ 3/2  ,  u 2 (x)= ξ 1/2  K 1/3 3 2  –Aλ ξ 3/2  ,
                                                     3
                                               W = – ,  ξ = x – (λ/A).
                                                     2
                                x
               24.   y(x)+ A    x sinh[λ(x – t)]y(t) dt = f(x).
                              a
                     This is a special case of equation 2.9.31 with g(x)= Ax and h(t)=1.
                        Solution:

                                              Aλ     x
                                   y(x)= f(x)+       x u 1 (x)u 2 (t) – u 2 (x)u 1 (t) f(t) dt,
                                               W   a
                     where u 1 (x), u 2 (x) is a fundamental system of solutions of the second-order linear ordinary
                     differential equation u     + λ(Ax – λ)u = 0, and W is the Wronskian.
                                      xx
                        The functions u 1 (x), u 2 (x), and W are specified in 2.3.23.
                                x
                                      m
                                 k
               25.   y(x)+ A    t sinh (λx)y(t) dt = f(x).
                              a
                                                                                   k
                                                                    m
                     This is a special case of equation 2.9.2 with g(x)= –A sinh (λx) and h(t)= t .
                                x
                                 k
                                      m
               26.   y(x)+ A    x sinh (λt)y(t) dt = f(x).
                              a
                                                                 k
                                                                               m
                     This is a special case of equation 2.9.2 with g(x)= –Ax and h(t) = sinh (λt).
                             x


               27.   y(x) –    A sinh(kx)+ B – AB(x – t) sinh(kx) y(t) dt = f(x).
                            a
                     This is a special case of equation 2.9.7 with λ = B and g(x)= A sinh(kx).
                        Solution:
                                                          x

                                            y(x)= f(x)+    R(x, t)f(t) dt,
                                                         a
                                           G(x)    B 2     x  B(x–s)               A
                      R(x, t)=[A sinh(kx)+ B]   +         e    G(s) ds,  G(x)=exp    cosh(kx) .
                                            G(t)  G(t)  t                          k

                 © 1998 by CRC Press LLC









               © 1998 by CRC Press LLC
                                                                                                             Page 140
   156   157   158   159   160   161   162   163   164   165   166