Page 162 - Handbook Of Integral Equations
P. 162

x


               28.   y(x)+     A sinh(kt)+ B + AB(x – t) sinh(kt) y(t) dt = f(x).
                            a
                     This is a special case of equation 2.9.8 with λ = B and g(t)= A sinh(kt).
                        Solution:
                                                           x
                                            y(x)= f(x)+    R(x, t)f(t) dt,
                                                         a
                                           G(t)   B  2     x  B(t–s)              A
                      R(x, t)= –[sinh(kt)+ B]  +         e     G(s) ds,  G(x)=exp   cosh(kx) .
                                           G(x)  G(x)  t                          k

                              ∞       √


               29.   y(x)+ A     sinh λ t – x y(t) dt = f(x).
                              x
                                                                       √
                     This is a special case of equation 2.9.62 with K(x)= A sinh λ –x .
                 2.3-3. Kernels Containing Hyperbolic Tangent

                              x

               30.   y(x) – A   tanh(λx)y(t) dt = f(x).
                             a
                     This is a special case of equation 2.9.2 with g(x)= A tanh(λx) and h(t)=1.
                        Solution:
                                                    x          cosh(λx)    A/λ
                                    y(x)= f(x)+ A    tanh(λx)            f(t) dt.
                                                   a         cosh(λt)
                              x

               31.   y(x) – A   tanh(λt)y(t) dt = f(x).
                             a
                     This is a special case of equation 2.9.2 with g(x)= A and h(t) = tanh(λt).
                        Solution:
                                                    x                  A/λ
                                                             cosh(λx)
                                    y(x)= f(x)+ A    tanh(λt)            f(t) dt.
                                                   a         cosh(λt)
                                x

               32.   y(x)+ A    tanh(λx) – tanh(λt) y(t) dt = f(x).
                              a
                     This is a special case of equation 2.9.5 with g(x)= A tanh(λx).
                        Solution:                   x
                                               1




                                   y(x)= f(x)+        Y (x)Y (t) – Y (x)Y (t) f(t) dt,
                                                           2
                                                                      1
                                                       1
                                                                 2
                                               W
                                                   a
                     where Y 1 (x), Y 2 (x) is a fundamental system of solutions of the second-order linear ordinary
                                         2
                     differential equation cosh (λx)Y      + AλY =0, W is the Wronskian, and the primes stand for
                                              xx
                     the differentiation with respect to the argument specified in the parentheses.
                        As shown in A. D. Polyanin and V. F. Zaitsev (1996), the functions Y 1 (x) and Y 2 (x) can
                     be represented in the form
                                               e                         dξ
                                      
         λx                     x
                              Y 1 (x)= F α, β,1;     ,  Y 2 (x)= Y 1 (x)    ,  W =1,
                                                                         2
                                              1+ e λx                a  Y (ξ)
                                                                        1
                     where F(α, β, γ; z) is the hypergeometric function, in which α and β are determined from
                     the algebraic system α + β =1, αβ = –A/λ.
                 © 1998 by CRC Press LLC






               © 1998 by CRC Press LLC
                                                                                                             Page 141
   157   158   159   160   161   162   163   164   165   166   167