Page 167 - Handbook Of Integral Equations
P. 167

x


               11.   y(x) –    A ln(kx)+ B – AB(x – t) ln(kx) y(t) dt = f(x).
                            a
                     This is a special case of equation 2.9.7 with λ = B and g(x)= A ln(kx).
                               x

               12.   y(x)+     A ln(kt)+ B + AB(x – t) ln(kt) y(t) dt = f(x).
                            a
                     This is a special case of equation 2.9.8 with λ = B and g(t)= A ln(kt).

                              ∞

                                     n
               13.   y(x)+ a    (t – x) ln(t – x)y(t) dt = f(x),  n =1, 2, ...
                             x
                     For f(x)=  m    A k exp(–λ k x), where λ k > 0, a solution of the equation has the form
                              k=1
                               m
                                  A k                      an!
                         y(x)=       exp(–λ k x),  B k =1 +  n+1  1+  1 2  +  1 3  + ··· +  n 1  – ln λ k – C ,
                                  B k                      λ
                               k=1                          k
                     where C = 0.5772 ... is the Euler constant.
                              ∞  ln(t – x)

               14.   y(x)+ a     √      y(t) dt = f(x).
                             x     t – x
                     This is a special case of equation 2.9.62 with K(–x)= ax –1/2  ln x.
                        For f(x)=  m    A k exp(–λ k x), where λ k > 0, a solution of the equation has the form
                                 k=1
                                       m
                                         A k                         π

                                y(x)=        exp(–λ k x),  B k =1 – a   ln(4λ k )+ C ,
                                         B k                         λ k
                                      k=1
                     where C = 0.5772 ... is the Euler constant.

               2.5. Equations Whose Kernels Contain Trigonometric
                      Functions

                 2.5-1. Kernels Containing Cosine

                              x

               1.    y(x) – A   cos(λx)y(t) dt = f(x).
                             a
                     This is a special case of equation 2.9.2 with g(x)= A cos(λx) and h(t)=1.
                        Solution:
                                               x

                                y(x)= f(x)+ A   cos(λx)exp  A   sin(λx) – sin(λt)    f(t) dt.
                                              a            λ
                              x

               2.    y(x) – A   cos(λt)y(t) dt = f(x).
                             a
                     This is a special case of equation 2.9.2 with g(x)= A and h(t) = cos(λt).
                        Solution:
                                                x
                                                           A
                                y(x)= f(x)+ A   cos(λt)exp    sin(λx) – sin(λt)  f(t) dt.
                                              a            λ



                 © 1998 by CRC Press LLC









               © 1998 by CRC Press LLC
                                                                                                             Page 146
   162   163   164   165   166   167   168   169   170   171   172