Page 164 - Handbook Of Integral Equations
P. 164

x

               43.   y(x) – A   coth(λt)y(t) dt = f(x).
                             a
                     This is a special case of equation 2.9.2 with g(x)= A and h(t) = coth(λt).
                        Solution:
                                                     x         sinh(λx)  
 A/λ
                                     y(x)= f(x)+ A   coth(λt)           f(t) dt.
                                                   a         sinh(λt)
                              x
                                coth(λt)
               44.   y(x) – A           y(t) dt = f(x).
                             a coth(λx)
                     Solution:
                                                       x
                                                              coth(λt)
                                        y(x)= f(x)+ A   e A(x–t)     f(t) dt.
                                                              coth(λx)
                                                      a
                                x  coth(λx)
               45.   y(x) – A           y(t) dt = f(x).
                             a  coth(λt)
                     Solution:
                                                        x     coth(λx)
                                        y(x)= f(x)+ A   e A(x–t)     f(t) dt.
                                                      a       coth(λt)
                                x
                                   k
                                             m
               46.   y(x) – A   coth (λx) coth (µt)y(t) dt = f(x).
                             a
                                                                                    m
                                                                   k
                     This is a special case of equation 2.9.2 with g(x)= A coth (λx) and h(t) = coth (µt).
                                x
                                      m
                                 k
               47.   y(x)+ A    t coth (λx)y(t) dt = f(x).
                              a
                                                                                   k
                                                                    m
                     This is a special case of equation 2.9.2 with g(x)= –A coth (λx) and h(t)= t .
                              x

                                      m
                                 k
               48.   y(x)+ A    x coth (λt)y(t) dt = f(x).
                              a
                                                                               m
                                                                 k
                     This is a special case of equation 2.9.2 with g(x)= –Ax and h(t) = coth (λt).
                              ∞

               49.   y(x)+ A     coth[λ(t – x)]y(t) dt = f(x).
                              x
                     This is a special case of equation 2.9.62 with K(z)= A coth(–λz).
                              ∞

                                      √
               50.   y(x)+ A     coth λ t – x y(t) dt = f(x).
                              x
                                                                       √
                     This is a special case of equation 2.9.62 with K(z)= A coth λ –z .
                             x


               51.   y(x) –    A coth(kx)+ B – AB(x – t) coth(kx) y(t) dt = f(x).
                            a
                     This is a special case of equation 2.9.7 with λ = B and g(x)= A coth(kx).
                             x


               52.   y(x)+     A coth(kt)+ B + AB(x – t) coth(kt) y(t) dt = f(x).
                            a
                     This is a special case of equation 2.9.8 with λ = B and g(t)= A coth(kt).

                 © 1998 by CRC Press LLC









               © 1998 by CRC Press LLC
                                                                                                             Page 143
   159   160   161   162   163   164   165   166   167   168   169