Page 165 - Handbook Of Integral Equations
P. 165

2.3-5. Kernels Containing Combinations of Hyperbolic Functions

                                x
                                    k        m
               53.   y(x) – A   cosh (λx) sinh (µt)y(t) dt = f(x).
                             a
                                                                                    m
                                                                   k
                     This is a special case of equation 2.9.2 with g(x)= A cosh (λx) and h(t) = sinh (µt).
                             x


               54.   y(x) –    A + B cosh(λx)+ B(x – t)[λ sinh(λx) – A cosh(λx)] y(t) dt = f(x).
                            a
                     This is a special case of equation 2.9.32 with b = B and g(x)= A.
                             x


               55.   y(x) –    A + B sinh(λx)+ B(x – t)[λ cosh(λx) – A sinh(λx)] y(t) dt = f(x).
                            a
                     This is a special case of equation 2.9.33 with b = B and g(x)= A.
                              x

                                             m
                                    k
               56.   y(x) – A   tanh (λx) coth (µt)y(t) dt = f(x).
                             a
                                                                   k
                                                                                    m
                     This is a special case of equation 2.9.2 with g(x)= A tanh (λx) and h(t) = coth (µt).
               2.4. Equations Whose Kernels Contain Logarithmic
                      Functions
                 2.4-1. Kernels Containing Logarithmic Functions

                              x

               1.    y(x) – A   ln(λx)y(t) dt = f(x).
                             a
                     This is a special case of equation 2.9.2 with g(x)= A ln(λx) and h(t)=1.
                        Solution:
                                                      x           (λx) Ax
                                     y(x)= f(x)+ A    ln(λx)e –A(x–t)  At  f(t) dt.
                                                    a             (λt)
                                x
               2.    y(x) – A   ln(λt)y(t) dt = f(x).
                             a
                     This is a special case of equation 2.9.2 with g(x)= A and h(t) = ln(λt).
                        Solution:
                                                     x
                                                                 (λx) Ax
                                      y(x)= f(x)+ A   ln(λt)e –A(x–t)  At  f(t) dt.
                                                    a             (λt)
                                x
               3.    y(x)+ A    (ln x – ln t)y(t) dt = f(x).
                              a
                     This is a special case of equation 2.9.5 with g(x)= A ln x.
                        Solution:                   x
                                                1




                                    y(x)= f(x)+       u (x)u (t) – u (x)u (t) f(t) dt,
                                                       1
                                                                 2
                                                            2
                                                                      1
                                               W
                                                   a
                     where the primes denote differentiation with respect to the argument specified in the paren-
                     theses; and u 1 (x), u 2 (x) is a fundamental system of solutions of the second-order linear
                                                               –1
                     homogeneous ordinary differential equation u    xx +Ax u = 0, with u 1 (x) and u 2 (x) expressed
                     in terms of Bessel functions or modified Bessel functions, depending on the sign of A:
                                         √      √               √      √
                              1
                         W =   ,   u 1 (x)=  xJ 1 2 Ax ,  u 2 (x)=  xY 1 2 Ax     for A >0,
                              π
                                         √      √               √      √
                               1
                         W = – ,   u 1 (x)=  xI 1 2 –Ax ,  u 2 (x)=  xK 1 2 –Ax   for A <0.
                               2
                 © 1998 by CRC Press LLC


               © 1998 by CRC Press LLC
                                                                                                             Page 144
   160   161   162   163   164   165   166   167   168   169   170