Page 170 - Handbook Of Integral Equations
P. 170

x

                                     m
                                 k
               10.   y(x)+ A    x cos (λt)y(t) dt = f(x).
                              a
                                                                 k
                                                                              m
                     This is a special case of equation 2.9.2 with g(x)= –Ax and h(t) = cos (λt).
                             x


               11.   y(x) –    A cos(kx)+ B – AB(x – t) cos(kx) y(t) dt = f(x).
                            a
                     This is a special case of equation 2.9.7 with λ = B and g(x)= A cos(kx).
                        Solution:
                                                           x
                                            y(x)= f(x)+    R(x, t)f(t) dt,
                                                         a
                                            G(x)   B 2     x  B(x–s)                A
                       R(x, t)=[A cos(kx)+ B]   +         e    G(s) ds,  G(x)=exp    sin(kx) .
                                            G(t)  G(t)  t                          k
                             x


               12.   y(x)+     A cos(kt)+ B + AB(x – t) cos(kt) y(t) dt = f(x).
                            a
                     This is a special case of equation 2.9.8 with λ = B and g(t)= A cos(kt).
                        Solution:

                                                           x
                                            y(x)= f(x)+    R(x, t)f(t) dt,
                                                         a
                                            G(t)   B 2     x  B(t–s)                 A
                      R(x, t)= –[A cos(kt)+ B]   +         e    G(s) ds,  G(x)=exp   sin(kx) .
                                            G(x)   G(x)  t                         k

                              ∞
                                     √

               13.   y(x)+ A     cos λ t – x y(t) dt = f(x).
                              x
                                                                      √
                     This is a special case of equation 2.9.62 with K(x)= A cos λ –x .

                 2.5-2. Kernels Containing Sine

                                x
               14.   y(x) – A   sin(λx)y(t) dt = f(x).
                             a
                     This is a special case of equation 2.9.2 with g(x)= A sin(λx) and h(t)=1.
                        Solution:
                                               x

                                                           A
                               y(x)= f(x)+ A    sin(λx)exp   cos(λt) – cos(λx)  f(t) dt.
                                              a            λ
                              x

               15.   y(x) – A   sin(λt)y(t) dt = f(x).
                             a
                     This is a special case of equation 2.9.2 with g(x)= A and h(t) = sin(λt).
                        Solution:
                                                x
                                                           A
                                y(x)= f(x)+ A   sin(λt)exp   cos(λt) – cos(λx)  f(t) dt.
                                              a            λ



                 © 1998 by CRC Press LLC









               © 1998 by CRC Press LLC
                                                                                                             Page 149
   165   166   167   168   169   170   171   172   173   174   175