Page 168 - Handbook Of Integral Equations
P. 168

x

               3.    y(x)+ A    cos[λ(x – t)]y(t) dt = f(x).
                              a
                     This is a special case of equation 2.9.34 with g(t)= A. Therefore, solving this integral
                     equation is reduced to solving the following second-order linear nonhomogeneous ordinary
                     differential equation with constant coefficients:

                                                             2
                                                   2

                                       y     + Ay + λ y = f xx  + λ f,  f = f(x),

                                               x
                                        xx
                     with the initial conditions


                                          y(a)= f(a),  y (a)= f (a) – Af(a).
                                                       x
                                                              x
                     1 . Solution with |A| >2|λ|:
                      ◦
                                                         x

                                            y(x)= f(x)+    R(x – t)f(t) dt,
                                                        a

                                               A 2
                                         1
                                                                                    2
                              R(x)=exp – Ax       sinh(kx) – A cosh(kx) ,  k =  1 A – λ .
                                                                                2

                                         2     2k                            4
                      ◦
                     2 . Solution with |A| <2|λ|:
                                                          x
                                            y(x)= f(x)+    R(x – t)f(t) dt,
                                                        a
                                                A 2

                                           1                                 2  1  2
                               R(x)=exp – Ax       sin(kx) – A cos(kx) ,  k =  λ – A .
                                          2                                     4
                                                2k
                                         1
                     3 . Solution with λ = ± A:
                      ◦
                                         2
                                           x
                                                                        1      1  2
                             y(x)= f(x)+   R(x – t)f(t) dt,  R(x)=exp – Ax    A x – A .
                                                                       2     2
                                         a
                             x   n


               4.    y(x)+         A k cos[λ k (x – t)] y(t) dt = f(x).
                            a
                                k=1
                     This integral equation is reduced to a linear nonhomogeneous ordinary differential equation
                     of order 2n with constant coefficients. Set
                                                      x
                                            I k (x)=  cos[λ k (x – t)]y(t) dt.              (1)
                                                    a
                     Differentiating (1) with respect to x twice yields
                                                        x

                                         I = y(x) – λ k  sin[λ k (x – t)]y(t) dt,
                                          k
                                                      a
                                                        x                                   (2)


                                         I = y (x) – λ 2  cos[λ k (x – t)]y(t) dt,

                                          k   x      k
                                                       a
                     where the primes stand for differentiation with respect to x. Comparing (1) and (2), we see
                     that
                                                       2


                                           I = y (x) – λ I k ,  I k = I k (x).              (3)
                                                       k
                                                 x
                                            k
                 © 1998 by CRC Press LLC
               © 1998 by CRC Press LLC
                                                                                                             Page 147
   163   164   165   166   167   168   169   170   171   172   173