Page 163 - Handbook Of Integral Equations
P. 163

x
                                tanh(λx)
               33.   y(x) – A           y(t) dt = f(x).
                                tanh(λt)
                             a
                     Solution:
                                                        x     tanh(λx)
                                        y(x)= f(x)+ A   e A(x–t)     f(t) dt.
                                                      a       tanh(λt)
                                x  tanh(λt)
               34.   y(x) – A           y(t) dt = f(x).
                             a tanh(λx)
                     Solution:
                                                        x     tanh(λt)
                                        y(x)= f(x)+ A   e A(x–t)     f(t) dt.
                                                      a       tanh(λx)
                              x

                                             m
                                    k
               35.   y(x) – A   tanh (λx) tanh (µt)y(t) dt = f(x).
                             a
                                                                   k
                                                                                    m
                     This is a special case of equation 2.9.2 with g(x)= A tanh (λx) and h(t) = tanh (µt).
                              x

                                 k
                                      m
               36.   y(x)+ A    t tanh (λx)y(t) dt = f(x).
                              a
                                                                    m
                                                                                   k
                     This is a special case of equation 2.9.2 with g(x)= –A tanh (λx) and h(t)= t .
                                x
                                       m
                                 k
               37.   y(x)+ A    x tanh (λt)y(t) dt = f(x).
                              a
                                                                               m
                                                                 k
                     This is a special case of equation 2.9.2 with g(x)= –Ax and h(t) = tanh (λt).
                              ∞

               38.   y(x)+ A     tanh[λ(t – x)]y(t) dt = f(x).
                              x
                     This is a special case of equation 2.9.62 with K(z)= A tanh(–λz).
                              ∞
                                       √

               39.   y(x)+ A     tanh λ t – x y(t) dt = f(x).
                              x
                                                                       √
                     This is a special case of equation 2.9.62 with K(z)= A tanh λ –z .
                               x

               40.   y(x) –    A tanh(kx)+ B – AB(x – t) tanh(kx) y(t) dt = f(x).
                            a
                     This is a special case of equation 2.9.7 with λ = B and g(x)= A tanh(kx).
                               x

               41.   y(x)+     A tanh(kt)+ B + AB(x – t) tanh(kt) y(t) dt = f(x).
                            a
                     This is a special case of equation 2.9.8 with λ = B and g(t)= A tanh(kt).
                 2.3-4. Kernels Containing Hyperbolic Cotangent
                              x

               42.   y(x) – A   coth(λx)y(t) dt = f(x).
                             a
                     This is a special case of equation 2.9.2 with g(x)= A coth(λx) and h(t)=1.
                        Solution:
                                                     x         sinh(λx)  
 A/λ
                                    y(x)= f(x)+ A    coth(λx)            f(t) dt.
                                                   a          sinh(λt)



                 © 1998 by CRC Press LLC









               © 1998 by CRC Press LLC
                                                                                                             Page 142
   158   159   160   161   162   163   164   165   166   167   168