Page 166 - Handbook Of Integral Equations
P. 166

x
                                ln(λx)
               4.    y(x) – A         y(t) dt = f(x).
                                ln(λt)
                             a
                     Solution:
                                                        x
                                                               ln(λx)
                                         y(x)= f(x)+ A   e A(x–t)   f(t) dt.
                                                               ln(λt)
                                                       a
                                x  ln(λt)
               5.    y(x) – A         y(t) dt = f(x).
                             a ln(λx)
                     Solution:
                                                         x     ln(λt)
                                         y(x)= f(x)+ A   e A(x–t)   f(t) dt.
                                                       a       ln(λx)
                                x
                                 k       m
               6.    y(x) – A   ln (λx)ln (µt)y(t) dt = f(x).
                             a
                                                                 k
                                                                                m
                     This is a special case of equation 2.9.2 with g(x)= A ln (λx) and h(t)=ln (µt).
                              ∞

               7.    y(x)+ a    ln(t – x)y(t) dt = f(x).
                             x
                     This is a special case of equation 2.9.62 with K(x)= a ln(–x).
                        For f(x)=  m    A k exp(–λ k x), where λ k > 0, a solution of the equation has the form
                                 k=1
                                         m
                                            A k
                                                                     a
                                   y(x)=       exp(–λ k x),  B k =1 –  (ln λ k + C),
                                            B k                      λ k
                                         k=1
                     where C = 0.5772 ... is the Euler constant.
                              ∞

                                  2
               8.    y(x)+ a    ln (t – x)y(t) dt = f(x).
                             x
                                                                  2
                     This is a special case of equation 2.9.62 with K(x)= a ln (–x).
                        For f(x)=  m    A k exp(–λ k x), where λ k > 0, a solution of the equation has the form
                                 k=1
                                     m
                                        A k                      a    1  2        2

                               y(x)=       exp(–λ k x),  B k =1 +   6  π + (ln λ k + C) ,
                                        B k                      λ k
                                     k=1
                     where C = 0.5772 ... is the Euler constant.


                 2.4-2. Kernels Containing Power-Law and Logarithmic Functions

                                x
                                    m
                                 k
               9.    y(x) – A   x ln (λt)y(t) dt = f(x).
                             a
                                                                            m
                                                                k
                     This is a special case of equation 2.9.2 with g(x)= Ax and h(t)=ln (λt).
                              x

                                 k
                                    m
               10.   y(x) – A   t ln (λx)y(t) dt = f(x).
                             a
                                                                 m              k
                     This is a special case of equation 2.9.2 with g(x)= A ln (λx) and h(t)= t .
                 © 1998 by CRC Press LLC









               © 1998 by CRC Press LLC
                                                                                                             Page 145
   161   162   163   164   165   166   167   168   169   170   171