Page 175 - Handbook Of Integral Equations
P. 175

x


               28.   y(x)+     A sin(kt)+ B + AB(x – t) sin(kt) y(t) dt = f(x).
                            a
                     This is a special case of equation 2.9.8 with λ = B and g(t)= A sin(kt).
                        Solution:
                                                           x
                                            y(x)= f(x)+    R(x, t)f(t) dt,
                                                         a
                                           G(t)    B 2     x  B(t–s)                A
                      R(x, t)= –[A sin(kt)+ B]  +         e    G(s) ds,  G(x)=exp –  cos(kx) .
                                           G(x)   G(x)  t                          k


                              ∞
                                     √
               29.   y(x)+ A     sin λ t – x y(t) dt = f(x).
                              x
                                                                      √
                     This is a special case of equation 2.9.62 with K(x)= A sin λ –x .
                 2.5-3. Kernels Containing Tangent


                                x
               30.   y(x) – A   tan(λx)y(t) dt = f(x).
                             a
                     This is a special case of equation 2.9.2 with g(x)= A tan(λx) and h(t)=1.
                        Solution:
                                                     x

                                                                    A/λ


                                      y(x)= f(x)+ A   tan(λx)    cos(λt)      f(t) dt.
                                                    a        cos(λx)
                                x
               31.   y(x) – A   tan(λt)y(t) dt = f(x).
                             a
                     This is a special case of equation 2.9.2 with g(x)= A and h(t) = tan(λt).
                        Solution:
                                                     x                A/λ
                                     y(x)= f(x)+ A    tanh(λt)    cos(λt)      f(t) dt.
                                                    a        cos(λx)
                              x


               32.   y(x)+ A    tan(λx) – tan(λt) y(t) dt = f(x).
                              a
                     This is a special case of equation 2.9.5 with g(x)= A tan(λx).
                        Solution:                   x
                                               1

                                   y(x)= f(x)+        Y (x)Y (t) – Y (x)Y (t) f(t) dt,



                                                           2
                                                                 2
                                                       1
                                                                      1
                                               W   a
                     where Y 1 (x), Y 2 (x) is a fundamental system of solutions of the second-order linear ordinary
                                        2
                     differential equation cos (λx)Y      + AλY =0, W is the Wronskian, and the primes stand for
                                              xx
                     the differentiation with respect to the argument specified in the parentheses.
                        As shown in A. D. Polyanin and V. F. Zaitsev (1995, 1996), the functions Y 1 (x) and Y 2 (x)
                     can be expressed via the hypergeometric function.
                                x  tan(λx)
               33.   y(x) – A          y(t) dt = f(x).
                             a  tan(λt)
                     Solution:
                                                        x     tan(λx)
                                        y(x)= f(x)+ A    e A(x–t)    f(t) dt.
                                                       a       tan(λt)
                 © 1998 by CRC Press LLC









               © 1998 by CRC Press LLC
                                                                                                             Page 154
   170   171   172   173   174   175   176   177   178   179   180