Page 178 - Handbook Of Integral Equations
P. 178

x

               2.    y(x) – A   arccos(λt)y(t) dt = f(x).
                             a
                     This is a special case of equation 2.9.2 with g(x)= A and h(t) = arccos(λt).

                              x
                                arccos(λx)
               3.    y(x) – A             y(t) dt = f(x).
                             a  arccos(λt)
                     Solution:
                                                      x
                                                             arccos(λx)
                                       y(x)= f(x)+ A   e A(x–t)       f(t) dt.
                                                             arccos(λt)
                                                     a
                              x
                                arccos(λt)
               4.    y(x) – A             y(t) dt = f(x).
                             a arccos(λx)
                     Solution:
                                                      x
                                                             arccos(λt)
                                       y(x)= f(x)+ A   e A(x–t)       f(t) dt.
                                                     a       arccos(λx)
                             x


               5.    y(x) –    A arccos(kx)+ B – AB(x – t) arccos(kx) y(t) dt = f(x).
                            a
                     This is a special case of equation 2.9.7 with λ = B and g(x)= A arccos(kx).
                               x

               6.    y(x)+     A arccos(kt)+ B + AB(x – t) arccos(kt) y(t) dt = f(x).
                            a
                     This is a special case of equation 2.9.8 with λ = B and g(t)= A arccos(kt).


                 2.6-2. Kernels Containing Arcsine


                              x

               7.    y(x) – A   arcsin(λx)y(t) dt = f(x).
                             a
                     This is a special case of equation 2.9.2 with g(x)= A arcsin(λx) and h(t)=1.
                              x

               8.    y(x) – A   arcsin(λt)y(t) dt = f(x).
                             a
                     This is a special case of equation 2.9.2 with g(x)= A and h(t) = arcsin(λt).

                              x
                                arcsin(λx)
               9.    y(x) – A             y(t) dt = f(x).
                             a  arcsin(λt)
                     Solution:
                                                      x
                                                             arcsin(λx)
                                       y(x)= f(x)+ A    e A(x–t)      f(t) dt.
                                                     a        arcsin(λt)
                              x
                                arcsin(λt)
               10.   y(x) – A             y(t) dt = f(x).
                             a arcsin(λx)
                     Solution:
                                                       x      arcsin(λt)
                                       y(x)= f(x)+ A    e A(x–t)      f(t) dt.
                                                     a       arcsin(λx)



                 © 1998 by CRC Press LLC









               © 1998 by CRC Press LLC
                                                                                                             Page 157
   173   174   175   176   177   178   179   180   181   182   183