Page 180 - Handbook Of Integral Equations
P. 180

x

               21.   y(x) – A   arccot(λt)y(t) dt = f(x).
                             a
                     This is a special case of equation 2.9.2 with g(x)= A and h(t) = arccot(λt).

                              x
                                arccot(λx)
               22.   y(x) – A             y(t) dt = f(x).
                             a  arccot(λt)
                     Solution:
                                                      x
                                                             arccot(λx)
                                       y(x)= f(x)+ A    e A(x–t)      f(t) dt.
                                                             arccot(λt)
                                                     a
                                x  arccot(λt)
               23.   y(x) – A             y(t) dt = f(x).
                             a arccot(λx)
                     Solution:
                                                      x
                                                             arccot(λt)
                                       y(x)= f(x)+ A    e A(x–t)      f(t) dt.
                                                     a       arccot(λx)
                              ∞

               24.   y(x)+ A     arccot[λ(t – x)]y(t) dt = f(x).
                              x
                     This is a special case of equation 2.9.62 with K(x)= A arccot(–λx).


                               x

               25.   y(x) –    A arccot(kx)+ B – AB(x – t) arccot(kx) y(t) dt = f(x).
                            a
                     This is a special case of equation 2.9.7 with λ = B and g(x)= A arccot(kx).

                             x


               26.   y(x)+     A arccot(kt)+ B + AB(x – t) arccot(kt) y(t) dt = f(x).
                            a
                     This is a special case of equation 2.9.8 with λ = B and g(t)= A arccot(kt).


               2.7. Equations Whose Kernels Contain Combinations of
                      Elementary Functions


                 2.7-1. Kernels Containing Exponential and Hyperbolic Functions


                                x
               1.    y(x)+ A    e µ(x–t)  cosh[λ(x – t)]y(t) dt = f(x).
                              a
                     Solution:
                                                         x

                                            y(x)= f(x)+    R(x – t)f(t) dt,
                                                        a

                                                A 2
                                          1                                     2  1  2
                            R(x)=exp (µ – A)x       sinh(kx) – A cosh(kx) ,  k =  λ + A .
                                          2      2k                                4


                 © 1998 by CRC Press LLC









               © 1998 by CRC Press LLC
                                                                                                             Page 159
   175   176   177   178   179   180   181   182   183   184   185