Page 184 - Handbook Of Integral Equations
P. 184

x


               20.   y(x)+    e µ(x–t)   A 1 sin[λ 1 (x – t)] + A 2 sin[λ 2 (x – t)] y(t) dt = f(x).
                            a
                     The substitution w(x)= e –µx y(x) leads to an equation of the form 2.5.18:
                                       x
                                                                              –µx
                              w(x)+     A 1 sin[λ 1 (x – t)] + A 2 sin[λ 2 (x – t)] w(t) dt = e  f(x).
                                     a
                               x      n

                               µ(x–t)
               21.   y(x)+    e          A k sin[λ k (x – t)] y(t) dt = f(x).
                            a
                                      k=1
                     The substitution w(x)= e –µx y(x) leads to an equation of the form 2.5.19:
                                             n
                                           x
                                   w(x)+         A k sin[λ k (x – t)] w(t) dt = e –µx f(x).
                                          a
                                              k=1
                              x

               22.   y(x)+ A    te µ(x–t)  sin[λ(x – t)]y(t) dt = f(x).
                              a
                     Solution:                   x
                                            Aλ      µ(x–t)
                                y(x)= f(x)+        te    u 1 (x)u 2 (t) – u 2 (x)u 1 (t) f(t) dt,
                                            W
                                                a
                     where u 1 (x), u 2 (x) is a fundamental system of solutions of the second-order linear ordinary
                     differential equation u     + λ(Ax + λ)u = 0, and W is the Wronskian.
                                      xx
                        Depending on the sign of Aλ, the functions u 1 (x) and u 2 (x) are expressed in terms of
                     Bessel functions or modified Bessel functions as follows:
                        if Aλ > 0, then
                                               √                          √
                               u 1 (x)= ξ 1/2 J 1/3 3 2  Aλ ξ 3/2  ,  u 2 (x)= ξ 1/2  Y 1/3 3 2  Aλ ξ 3/2  ,
                                              W =3/π,    ξ = x +(λ/A);

                        if Aλ < 0, then
                                             √                            √
                              u 1 (x)= ξ 1/2  I 1/3 3 2  –Aλ ξ  3/2  ,  u 2 (x)= ξ 1/2  K 1/3 3 2  –Aλ ξ 3/2  ,
                                                     3
                                               W = – ,  ξ = x +(λ/A).
                                                     2
                                x
               23.   y(x)+ A    xe µ(x–t)  sin[λ(x – t)]y(t) dt = f(x).
                              a
                     Solution:
                                            Aλ     x  µ(x–t)
                                y(x)= f(x)+       xe      u 1 (x)u 2 (t) – u 2 (x)u 1 (t) f(t) dt,
                                            W   a
                     where u 1 (x), u 2 (x) is a fundamental system of solutions of the second-order linear ordinary
                     differential equation u     + λ(Ax + λ)u = 0, and W is the Wronskian.
                                      xx
                        The functions u 1 (x), u 2 (x), and W are specified in 2.7.22.

                              ∞            √
               24.   y(x)+ A     e µ(t–x)  sin λ t – x y(t) dt = f(x).
                              x
                                                                         √
                                                                  –µx
                     This is a special case of equation 2.9.62 with K(x)= Ae  sin λ –x .


                 © 1998 by CRC Press LLC









               © 1998 by CRC Press LLC
                                                                                                             Page 163
   179   180   181   182   183   184   185   186   187   188   189