Page 189 - Handbook Of Integral Equations
P. 189

x

               2.    y(x) – A   J ν (λx)y(t) dt = f(x).
                             a
                     This is a special case of equation 2.9.2 with g(x)= AJ ν (λx) and h(t)=1.

                              x

               3.    y(x) – A   J ν (λt)y(t) dt = f(x).
                             a
                     This is a special case of equation 2.9.2 with g(x)= A and h(t)= J ν (λt).

                                x  J ν (λx)
               4.    y(x) – A          y(t) dt = f(x).
                             a  J ν (λt)
                     Solution:
                                                        x
                                                               J ν (λx)
                                        y(x)= f(x)+ A    e A(x–t)    f(t) dt.
                                                       a       J ν (λt)
                                x  J ν (λt)
               5.    y(x) – A          y(t) dt = f(x).
                             a J ν (λx)
                     Solution:
                                                         x     J ν (λt)
                                        y(x)= f(x)+ A    e A(x–t)    f(t) dt.
                                                       a       J ν (λx)
                              ∞

               6.    y(x)+ A     J ν [λ(t – x)]y(t) dt = f(x).
                              x
                     This is a special case of equation 2.9.62 with K(x)= AJ ν (–λx).

                               x

               7.    y(x) –    AJ ν (kx)+ B – AB(x – t)J ν (kx) y(t) dt = f(x).
                            a
                     This is a special case of equation 2.9.7 with λ = B and g(x)= AJ ν (kx).
                               x

               8.    y(x)+     AJ ν (kt)+ B + AB(x – t)J ν (kt) y(t) dt = f(x).
                            a
                     This is a special case of equation 2.9.8 with λ = B and g(t)= AJ ν (kt).

                              x

               9.    y(x) – λ  e µ(x–t) J 0 (x – t)y(t) dt = f(x).
                             0
                     Solution:
                                                          x
                                            y(x)= f(x)+    R(x – t)f(t) dt,
                                                        0
                     where
                                                                2
                                                  √            λ       √
                                                                             2
                                                       2
                                  R(x)= e µx  λ cos  1 – λ x + √    sin  1 – λ x +
                                                              1 – λ 2
                                                 λ      x   √             J 1 (t)
                                                                 2
                                              √          sin  1 – λ (x – t)  dt .
                                                1 – λ 2  0                t
                                x
               10.   y(x) – A   Y ν (λx)y(t) dt = f(x).
                             a
                     This is a special case of equation 2.9.2 with g(x)= AY ν (λx) and h(t)=1.



                 © 1998 by CRC Press LLC









               © 1998 by CRC Press LLC
                                                                                                             Page 168
   184   185   186   187   188   189   190   191   192   193   194