Page 190 - Handbook Of Integral Equations
P. 190

x

               11.   y(x) – A   Y ν (λt)y(t) dt = f(x).
                             a
                     This is a special case of equation 2.9.2 with g(x)= A and h(t)= Y ν (λt).
                                x  Y ν (λx)
               12.   y(x) – A          y(t) dt = f(x).
                             a  Y ν (λt)
                     Solution:
                                                        x
                                                               Y ν (λx)
                                        y(x)= f(x)+ A    e A(x–t)    f(t) dt.
                                                       a       Y ν (λt)
                                x  Y ν (λt)
               13.   y(x) – A          y(t) dt = f(x).
                             a Y ν (λx)
                     Solution:
                                                        x
                                                               Y ν (λt)
                                        y(x)= f(x)+ A    e A(x–t)    f(t) dt.
                                                       a       Y ν (λx)
                              ∞

               14.   y(x)+ A     Y ν [λ(t – x)]y(t) dt = f(x).
                              x
                     This is a special case of equation 2.9.62 with K(x)= AY ν (–λx).
                             x


               15.   y(x) –    AY ν (kx)+ B – AB(x – t)Y ν (kx) y(t) dt = f(x).
                            a
                     This is a special case of equation 2.9.7 with λ = B and g(x)= AY ν (kx).
                               x

               16.   y(x)+     AY ν (kt)+ B + AB(x – t)Y ν (kt) y(t) dt = f(x).
                            a
                     This is a special case of equation 2.9.8 with λ = B and g(t)= AY ν (kt).

                 2.8-2. Kernels Containing Modified Bessel Functions

                                x
               17.   y(x)– A    I ν (λx)y(t) dt = f(x).
                             a
                     This is a special case of equation 2.9.2 with g(x)= AI ν (λx) and h(t)=1.
                                x
               18.   y(x)– A    I ν (λt)y(t) dt = f(x).
                             a
                     This is a special case of equation 2.9.2 with g(x)= A and h(t)= I ν (λt).
                              x
                                I ν (λx)
               19.   y(x)– A           y(t) dt = f(x).
                                I ν (λt)
                             a
                     Solution:
                                                         x  A(x–t) ν (λx)
                                                               I
                                        y(x)= f(x)+ A    e           f(t) dt.
                                                       a       I ν (λt)
                              x
                                I ν (λt)
               20.   y(x)– A           y(t) dt = f(x).
                             a I ν (λx)
                     Solution:
                                                         x     I ν (λt)
                                        y(x)= f(x)+ A    e A(x–t)    f(t) dt.
                                                       a       I ν (λx)



                 © 1998 by CRC Press LLC









               © 1998 by CRC Press LLC
                                                                                                             Page 169
   185   186   187   188   189   190   191   192   193   194   195