Page 191 - Handbook Of Integral Equations
P. 191

∞

               21.   y(x)+ A     I ν [λ(t – x)]y(t) dt = f(x).
                              x
                     This is a special case of equation 2.9.62 with K(x)= AI ν (–λx).

                               x

               22.   y(x) –    AI ν (kx)+ B – AB(x – t)I ν (kx) y(t) dt = f(x).
                            a
                     This is a special case of equation 2.9.7 with λ = B and g(x)= AI ν (kx).


                               x

               23.   y(x)+     AI ν (kt)+ B + AB(x – t)I ν (kt) y(t) dt = f(x).
                            a
                     This is a special case of equation 2.9.8 with λ = B and g(t)= AI ν (kt).

                                x
               24.   y(x) – A   K ν (λx)y(t) dt = f(x).
                             a
                     This is a special case of equation 2.9.2 with g(x)= AK ν (λx) and h(t)=1.

                                x
               25.   y(x) – A   K ν (λt)y(t) dt = f(x).
                             a
                     This is a special case of equation 2.9.2 with g(x)= A and h(t)= K ν (λt).

                                x  K ν (λx)
               26.   y(x) – A           y(t) dt = f(x).
                             a  K ν (λt)
                     Solution:
                                                        x     K ν (λx)
                                        y(x)= f(x)+ A    e A(x–t)    f(t) dt.
                                                      a        K ν (λt)
                              x
                                K ν (λt)
               27.   y(x) – A           y(t) dt = f(x).
                             a K ν (λx)
                     Solution:
                                                       x
                                                               K ν (λt)
                                        y(x)= f(x)+ A    e A(x–t)    f(t) dt.
                                                      a       K ν (λx)
                              ∞

               28.   y(x)+ A     K ν [λ(t – x)]y(t) dt = f(x).
                              x
                     This is a special case of equation 2.9.62 with K(x)= AK ν (–λx).

                             x


               29.   y(x) –    AK ν (kx)+ B – AB(x – t)K ν (kx) y(t) dt = f(x).
                            a
                     This is a special case of equation 2.9.7 with λ = B and g(x)= AK ν (kx).
                             x


               30.   y(x)+     AK ν (kt)+ B + AB(x – t)K ν (kt) y(t) dt = f(x).
                            a
                     This is a special case of equation 2.9.8 with λ = B and g(t)= AK ν (kt).



                 © 1998 by CRC Press LLC









               © 1998 by CRC Press LLC
                                                                                                             Page 170
   186   187   188   189   190   191   192   193   194   195   196