Page 196 - Handbook Of Integral Equations
P. 196

where Y = Y (x) is an arbitrary nontrivial solution of the second-order homogeneous differ-
                     ential equation


                                               Y xx  + g(x)Y + h(x)Y =0
                                                         x
                     satisfying the condition Y (a) ≠ 0.
                               x
               13.   y(x)+    (x – t)g(x)h(t)y(t) dt = f(x).
                            a
                     The substitution y(x)= g(x)u(x) leads to an equation of the form 2.9.4:

                                                x
                                       u(x)+    (x – t)g(t)h(t)u(t) dt = f(x)/g(x).
                                              a
                               x
                                       n           n–1
               14.   y(x) –    g(x)+ λx + λ(x – t)x   [n – xg(x)] y(t) dt = f(x).
                            a
                                                                 n
                     This is a special case of equation 2.9.16 with h(x)= λx .
                        Solution:
                                                          x

                                            y(x)= f(x)+    R(x, t)f(t) dt,
                                                         a
                                                 G(x)      2n    n–1  H(x)     x  G(s)
                                               n
                              R(x, t)=[g(x)+ λx ]     + λ(λx  + nx  )             ds,
                                                 G(t)                G(t)    H(s)
                                                                           t
                                        x
                                                            
  λ
                     where G(x)=exp     g(s) ds and H(x)=exp      x n+1  .
                                      a                      n +1
                               x

               15.   y(x) –    g(x)+ λ +(x – t)[g (x) – λg(x)] y(t) dt = f(x).

                                                x
                            a
                     This is a special case of equation 2.9.16.
                        Solution:
                                                          x

                                            y(x)= f(x)+    R(x, t)f(t) dt,
                                                         a
                                                                          x
                                                                            e λ(s–t)
                                                            2


                               R(x, t)=[g(x)+ λ]e λ(x–t)  + [g(x)] + g (x) G(x)   ds,

                                                               x
                                                                          t  G(s)
                                       x

                     where G(x)=exp     g(s) ds .
                                      a
                               x

               16.   y(x) –    g(x)+ h(x)+(x – t)[h (x) – g(x)h(x)] y(t) dt = f(x).

                                                  x
                            a
                     Solution:
                                                          x

                                            y(x)= f(x)+    R(x, t)f(t) dt,
                                                         a
                                                                            x
                                                G(x)         2       H(x)     G(s)


                              R(x, t)=[g(x)+ h(x)]   + {[h(x)] + h (x)}            ds,
                                                                 x
                                                 G(t)                 G(t)  t  H(s)
                                       x                        x

                     where G(x)=exp     g(s) ds and H(x)=exp    h(s) ds .
                                      a                       a
                 © 1998 by CRC Press LLC



               © 1998 by CRC Press LLC
                                                                                                             Page 175
   191   192   193   194   195   196   197   198   199   200   201