Page 194 - Handbook Of Integral Equations
P. 194

x

                     Introducing the new variable Y (x)=  y(t) dt, we obtain the second-order linear ordinary
                                                    a
                     differential equation

                                         Y      + g(x)+ h(x) Y + g (x)Y = f (x),            (1)



                                          xx              x   x       x
                     which must be supplemented by the initial conditions
                                               Y (a)=0,  Y (a)= f(a).                       (2)

                                                          x
                     Conditions (3) follow from the original equation and the definition of Y (x).
                        For exact solutions of second-order linear ordinary differential equations (1) with vari-
                     ous f(x), see E. Kamke (1977), G. M. Murphy (1960), and A. D. Polyanin and V. F. Zaitsev
                     (1995, 1996).
                      ◦
                     2 . Let Y 1 = Y 1 (x) and Y 2 = Y 2 (x) be two linearly independent solutions (Y 1 /Y 2 /≡ const) of the



                     second-order linear homogeneous differential equation Y xx  + g(x)+ h(x) Y + g (x)Y =0,

                                                                                  x
                                                                                      x
                     which follows from (1) for f(x) ≡ 0.
                        Solving the nonhomogeneous equation (1) under the initial conditions (2) with arbitrary
                     f = f(x) and taking into account y(x)= Y (x), we obtain the solution of the original integral

                                                      x
                     equation in the form
                                                          x

                                            y(x)= f(x)+    R(x, t)f(t) dt,
                                                         a
                                   ∂ 2     Y 1 (x)Y 2 (t) – Y 2 (x)Y 1 (t)


                         R(x, t)=                          ,  W(x)= Y 1 (x)Y (x) – Y 2 (x)Y (x),
                                                                                      1
                                                                           2
                                 ∂x∂t          W(t)
                     where W(x) is the Wronskian and the primes stand for the differentiation with respect to the
                     argument specified in the parentheses.
                               x

               7.    y(x) –    g(x)+ λ – λ(x – t)g(x) y(t) dt = f(x).
                            a
                     This is a special case of equation 2.9.16 with h(x)= λ.
                        Solution:
                                                           x
                                            y(x)= f(x)+    R(x, t)f(t) dt,
                                                         a
                                         G(x)    λ 2     x  λ(x–s)                 x
                         R(x, t)=[g(x)+ λ]    +        e     G(s) ds,  G(x)=exp    g(s) ds .
                                         G(t)   G(t)  t                          a
                               x

               8.    y(x)+     g(t)+ λ + λ(x – t)g(t) y(t) dt = f(x).
                            a
                     Solution:
                                                          x

                                            y(x)= f(x)+    R(x, t)f(t) dt,
                                                         a
                                          G(t)   λ 2     x  λ(t–s)                 x
                         R(x, t)= –[g(t)+ λ]  +         e    G(s) ds,  G(x)=exp    g(s) ds .
                                         G(x)   G(x)  t                          a
                             x


               9.    y(x) –    g 1 (x)+ g 2 (x)t y(t) dt = f(x).
                            a
                     This equation can be rewritten in the form of equation 2.9.11 with g 1 (x)= g(x)+ xh(x) and
                     g 2 (x)= –h(x).


                 © 1998 by CRC Press LLC









               © 1998 by CRC Press LLC
                                                                                                             Page 173
   189   190   191   192   193   194   195   196   197   198   199