Page 192 - Handbook Of Integral Equations
P. 192

2.9. Equations Whose Kernels Contain Arbitrary
                      Functions

                 2.9-1. Equations With Degenerate Kernel: K(x, t)= g 1 (x)h 1 (t)+ ··· + g n (x)h n (t)
                              x
                                g(x)
               1.    y(x) – λ       y(t) dt = f(x).
                             a  g(t)
                     Solution:
                                                         x
                                                               g(x)
                                          y(x)= f(x)+ λ   e λ(x–t)  f(t) dt.
                                                        a       g(t)
                             x

               2.    y(x) –   g(x)h(t)y(t) dt = f(x).
                            a
                     Solution:
                                    x                                            x

                       y(x)= f(x)+   R(x, t)f(t) dt,  where  R(x, t)= g(x)h(t)exp  g(s)h(s) ds .
                                   a                                            t
                               x
               3.    y(x)+    (x – t)g(x)y(t) dt = f(x).
                            a
                     This is a special case of equation 2.9.11.
                     1 . Solution:
                      ◦
                                                  x

                                              1
                                  y(x)= f(x)+       Y 1 (x)Y 2 (t) – Y 2 (x)Y 1 (t) g(x)f(t) dt,  (1)
                                              W
                                                  a
                     where Y 1 = Y 1 (x) and Y 2 = Y 2 (x) are two linearly independent solutions (Y 1 /Y 2 /≡ const) of
                     the second-order linear homogeneous differential equation Y xx  + g(x)Y = 0. In this case, the


                     Wronskian is a constant: W = Y 1 (Y 2 ) – Y 2 (Y 1 ) ≡ const.

                                                   x
                                                           x
                     2 . Given only one nontrivial solution Y 1 = Y 1 (x) of the linear homogeneous differential
                      ◦
                     equation Y      + g(x)Y = 0, one can obtain the solution of the integral equation by formula (1)
                             xx
                     with
                                                                  x
                                                                     dξ
                                          W =1,     Y 2 (x)= Y 1 (x)    ,
                                                                     2
                                                                   Y (ξ)
                                                                 b  1
                     where b is an arbitrary number.
                             x

               4.    y(x)+    (x – t)g(t)y(t) dt = f(x).
                            a
                     This is a special case of equation 2.9.12.
                      ◦
                     1 . Solution:
                                              1     x
                                  y(x)= f(x)+       Y 1 (x)Y 2 (t) – Y 2 (x)Y 1 (t) g(t)f(t) dt,  (1)
                                              W   a
                     where Y 1 = Y 1 (x) and Y 2 = Y 2 (x) are two linearly independent solutions (Y 1 /Y 2 /≡ const) of
                     the second-order linear homogeneous differential equation Y xx  + g(x)Y = 0. In this case, the


                     Wronskian is a constant: W = Y 1 (Y 2 ) – Y 2 (Y 1 ) ≡ const.

                                                           x
                                                   x
                      ◦
                     2 . Given only one nontrivial solution Y 1 = Y 1 (x) of the linear homogeneous differential

                     equation Y xx  + g(x)Y = 0, one can obtain the solution of the integral equation by formula (1)
                     with
                                                                   x  dξ
                                          W =1,     Y 2 (x)= Y 1 (x)  2  ,
                                                                 b  Y (ξ)
                                                                    1
                     where b is an arbitrary number.
                 © 1998 by CRC Press LLC



               © 1998 by CRC Press LLC
                                                                                                             Page 171
   187   188   189   190   191   192   193   194   195   196   197