Page 187 - Handbook Of Integral Equations
P. 187
2.7-5. Kernels Containing Hyperbolic and Trigonometric Functions
x
k
m
42. y(x) – A cosh (λx) cos (µt)y(t) dt = f(x).
a
k m
This is a special case of equation 2.9.2 with g(x)= A cosh (λx) and h(t) = cos (µt).
x
k m
43. y(x) – A cosh (λt) cos (µx)y(t) dt = f(x).
a
k
m
This is a special case of equation 2.9.2 with g(x)= A cos (µx) and h(t) = cosh (λt).
x
k
m
44. y(x) – A cosh (λx) sin (µt)y(t) dt = f(x).
a
m
k
This is a special case of equation 2.9.2 with g(x)= A cosh (λx) and h(t) = sin (µt).
x
k
m
45. y(x) – A cosh (λt) sin (µx)y(t) dt = f(x).
a
m
k
This is a special case of equation 2.9.2 with g(x)= A sin (µx) and h(t) = cosh (λt).
x
k
m
46. y(x) – A sinh (λx) cos (µt)y(t) dt = f(x).
a
k m
This is a special case of equation 2.9.2 with g(x)= A sinh (λx) and h(t) = cos (µt).
x
k m
47. y(x) – A sinh (λt) cos (µx)y(t) dt = f(x).
a
k
m
This is a special case of equation 2.9.2 with g(x)= A cos (µx) and h(t) = sinh (λt).
x
k
m
48. y(x) – A sinh (λx) sin (µt)y(t) dt = f(x).
a
k
m
This is a special case of equation 2.9.2 with g(x)= A sinh (λx) and h(t) = sin (µt).
x
k
m
49. y(x) – A sinh (λt) sin (µx)y(t) dt = f(x).
a
k
m
This is a special case of equation 2.9.2 with g(x)= A sin (µx) and h(t) = sinh (λt).
x
m
k
50. y(x) – A tanh (λx) cos (µt)y(t) dt = f(x).
a
k m
This is a special case of equation 2.9.2 with g(x)= A tanh (λx) and h(t) = cos (µt).
x
k m
51. y(x) – A tanh (λt) cos (µx)y(t) dt = f(x).
a
k
m
This is a special case of equation 2.9.2 with g(x)= A cos (µx) and h(t) = tanh (λt).
x
k
m
52. y(x) – A tanh (λx) sin (µt)y(t) dt = f(x).
a
k
m
This is a special case of equation 2.9.2 with g(x)= A tanh (λx) and h(t) = sin (µt).
x
m
k
53. y(x) – A tanh (λt) sin (µx)y(t) dt = f(x).
a
k
m
This is a special case of equation 2.9.2 with g(x)= A sin (µx) and h(t) = tanh (λt).
© 1998 by CRC Press LLC
© 1998 by CRC Press LLC
Page 166