Page 185 - Handbook Of Integral Equations
P. 185

x


               25.   y(x) –   e µ(x–t)    A sin(kx)+ B – AB(x – t) sin(kx) y(t) dt = f(x).
                            a
                     Solution:
                                                        x
                                          y(x)= f(x)+   e µ(x–t) M(x, t)f(t) dt,
                                                      a
                                           G(x)   B 2     x  B(x–s)                 A
                      M(x, t)=[A sin(kx)+ B]    +        e     G(s) ds,  G(x)=exp –  cos(kx) .
                                           G(t)   G(t)  t                          k
                               x

               26.   y(x)+    e µ(x–t)   A sin(kt)+ B + AB(x – t) sin(kt) y(t) dt = f(x).
                            a
                     Solution:
                                                       x

                                          y(x)= f(x)+   e µ(x–t) M(x, t)f(t) dt,
                                                      a
                                            G(t)   B 2     x  B(t–s)                A
                     M(x, t)= –[A sin(kt)+ B]   +         e    G(s) ds,  G(x)=exp –   cos(kx) .
                                           G(x)   G(x)                              k
                                                        t
                              x

               27.   y(x) – A   e µt  tan(λx)y(t) dt = f(x).
                             a
                                                                                µt
                     This is a special case of equation 2.9.2 with g(x)= A tan(λx) and h(t)= e .
                              x

               28.   y(x) – A   e µx  tan(λt)y(t) dt = f(x).
                             a
                     This is a special case of equation 2.9.2 with g(x)= Ae µx  and h(t) = tan(λt).
                              x


               29.   y(x)+ A    e µ(x–t)   tan(λx) – tan(λt) y(t) dt = f(x).
                              a
                     The substitution w(x)= e –µx y(x) leads to an equation of the form 2.5.32:
                                               x
                                                                       –µx
                                     w(x)+ A    tan(λx) – tan(λt) w(t) dt = e  f(x).
                                              a
                               x

               30.   y(x) –   e µ(x–t)    A tan(kx)+ B – AB(x – t) tan(kx) y(t) dt = f(x).
                            a
                     The substitution w(x)= e –µx y(x) leads to an equation of the form 2.9.7 with λ = B and
                     g(x)= A tan(kx):

                                       x
                                                                              –µx
                               w(x) –   A tan(kx)+ B – AB(x – t) tan(kx) w(t) dt = e  f(x).
                                     a
                               x

               31.   y(x)+    e µ(x–t)   A tan(kt)+ B + AB(x – t) tan(kt) y(t) dt = f(x).
                            a
                     The substitution w(x)= e –µx y(x) leads to an equation of the form 2.9.8 with λ = B and
                     g(t)= A tan(kt):
                                        x
                                                                             –µx
                               w(x)+     A tan(kt)+ B + AB(x – t) tan(kt) w(t) dt = e  f(x).
                                      a



                 © 1998 by CRC Press LLC









               © 1998 by CRC Press LLC
                                                                                                             Page 164
   180   181   182   183   184   185   186   187   188   189   190