Page 186 - Handbook Of Integral Equations
P. 186

x

               32.   y(x) – A   e µt  cot(λx)y(t) dt = f(x).
                             a
                                                                                µt
                     This is a special case of equation 2.9.2 with g(x)= A cot(λx) and h(t)= e .
                              x

               33.   y(x) – A   e µx  cot(λt)y(t) dt = f(x).
                             a
                     This is a special case of equation 2.9.2 with g(x)= Ae µx  and h(t) = cot(λt).



                 2.7-4. Kernels Containing Hyperbolic and Logarithmic Functions

                              x

                                           m
                                    k
               34.   y(x) – A   cosh (λx)ln (µt)y(t) dt = f(x).
                             a
                                                                   k
                                                                                   m
                     This is a special case of equation 2.9.2 with g(x)= A cosh (λx) and h(t)=ln (µt).
                              x

                                          m
                                    k
               35.   y(x) – A   cosh (λt)ln (µx)y(t) dt = f(x).
                             a
                                                                 m                 k
                     This is a special case of equation 2.9.2 with g(x)= A ln (µx) and h(t) = cosh (λt).
                              x

                                   k
                                          m
               36.   y(x) – A   sinh (λx)ln (µt)y(t) dt = f(x).
                             a
                                                                   k
                                                                                  m
                     This is a special case of equation 2.9.2 with g(x)= A sinh (λx) and h(t)=ln (µt).
                                x
                                   k      m
               37.   y(x) – A   sinh (λt)ln (µx)y(t) dt = f(x).
                             a
                                                                                   k
                                                                 m
                     This is a special case of equation 2.9.2 with g(x)= A ln (µx) and h(t) = sinh (λt).
                                x
                                    k
                                           m
               38.   y(x) – A   tanh (λx)ln (µt)y(t) dt = f(x).
                             a
                                                                                  m
                                                                   k
                     This is a special case of equation 2.9.2 with g(x)= A tanh (λx) and h(t)=ln (µt).
                              x

                                          m
                                    k
               39.   y(x) – A   tanh (λt)ln (µx)y(t) dt = f(x).
                             a
                                                                                   k
                                                                 m
                     This is a special case of equation 2.9.2 with g(x)= A ln (µx) and h(t) = tanh (λt).
                              x

                                           m
                                   k
               40.   y(x) – A   coth (λx)ln (µt)y(t) dt = f(x).
                             a
                                                                   k              m
                     This is a special case of equation 2.9.2 with g(x)= A coth (λx) and h(t)=ln (µt).
                              x

                                          m
                                   k
               41.   y(x) – A   coth (λt)ln (µx)y(t) dt = f(x).
                             a
                                                                 m                 k
                     This is a special case of equation 2.9.2 with g(x)= A ln (µx) and h(t) = coth (λt).
                 © 1998 by CRC Press LLC





               © 1998 by CRC Press LLC
                                                                                                             Page 165
   181   182   183   184   185   186   187   188   189   190   191