Page 183 - Handbook Of Integral Equations
P. 183

x


               14.   y(x) –   e µ(x–t)    A cos(kx)+ B – AB(x – t) cos(kx) y(t) dt = f(x).
                            a
                     Solution:
                                                        x
                                          y(x)= f(x)+   e µ(x–t) M(x, t)f(t) dt,
                                                      a
                                            G(x)   B 2     x  B(x–s)                A
                      M(x, t)=[A cos(kx)+ B]     +        e     G(s) ds,  G(x)=exp   sin(kx) .
                                            G(t)   G(t)  t                         k
                             x


               15.   y(x)+    e µ(x–t)   A cos(kt)+ B + AB(x – t) cos(kt) y(t) dt = f(x).
                            a
                     Solution:
                                                       x

                                          y(x)= f(x)+   e µ(x–t) M(x, t)f(t) dt,
                                                      a
                                            G(t)    B 2     x  B(t–s)                A
                      M(x, t)= –[A cos(kt)+ B]   +         e    G(s) ds,  G(x)=exp    sin(kx) .
                                            G(x)   G(x)  t                          k

                                x
               16.   y(x) – A   e µt  sin(λx)y(t) dt = f(x).
                             a
                                                                                µt
                     This is a special case of equation 2.9.2 with g(x)= A sin(λx) and h(t)= e .
                                x
               17.   y(x) – A   e µx  sin(λt)y(t) dt = f(x).
                             a
                     This is a special case of equation 2.9.2 with g(x)= Ae µx  and h(t) = sin(λt).

                                x
               18.   y(x)+ A    e µ(x–t)  sin[λ(x – t)]y(t) dt = f(x).
                              a
                     1 . Solution with λ(A + λ)>0:
                      ◦
                                           x

                                     Aλ      µ(x–t)
                          y(x)= f(x) –      e    sin[k(x – t)]f(t) dt,  where  k =  λ(A + λ).
                                      k
                                          a
                     2 . Solution with λ(A + λ)<0:
                      ◦
                                    Aλ     x  µ(x–t)
                         y(x)= f(x) –      e    sinh[k(x – t)]f(t) dt,  where  k =  –λ(λ + A).
                                     k   a
                     3 . Solution with A = –λ:
                      ◦
                                                         x

                                         y(x)= f(x)+ λ 2  (x – t)e µ(x–t) f(t) dt.
                                                        a
                                x
                                        3
               19.   y(x)+ A    e µ(x–t)  sin [λ(x – t)]y(t) dt = f(x).
                              a
                     The substitution w(x)= e –µx y(x) leads to an equation of the form 2.5.17:
                                                  x
                                                    3
                                       w(x)+ A    sin [λ(x – t)]w(t) dt = e –µx f(x).
                                                a



                 © 1998 by CRC Press LLC









               © 1998 by CRC Press LLC
                                                                                                             Page 162
   178   179   180   181   182   183   184   185   186   187   188