Page 188 - Handbook Of Integral Equations
P. 188

2.7-6. Kernels Containing Logarithmic and Trigonometric Functions

                                x
                                  k
                                          m
               54.   y(x) – A   cos (λx)ln (µt)y(t) dt = f(x).
                             a
                                                                                  m
                                                                  k
                     This is a special case of equation 2.9.2 with g(x)= A cos (λx) and h(t)=ln (µt).
                              x

                                         m
                                  k
               55.   y(x) – A   cos (λt)ln (µx)y(t) dt = f(x).
                             a
                                                                 m
                                                                                  k
                     This is a special case of equation 2.9.2 with g(x)= A ln (µx) and h(t) = cos (λt).
                              x

                                  k
                                         m
               56.   y(x) – A   sin (λx)ln (µt)y(t) dt = f(x).
                             a
                                                                                 m
                                                                  k
                     This is a special case of equation 2.9.2 with g(x)= A sin (λx) and h(t)=ln (µt).
                              x

                                  k
                                         m
               57.   y(x) – A   sin (λt)ln (µx)y(t) dt = f(x).
                             a
                                                                 m                k
                     This is a special case of equation 2.9.2 with g(x)= A ln (µx) and h(t) = sin (λt).
                                x
                                          m
                                   k
               58.   y(x) – A   tan (λx)ln (µt)y(t) dt = f(x).
                             a
                                                                                 m
                                                                  k
                     This is a special case of equation 2.9.2 with g(x)= A tan (λx) and h(t)=ln (µt).
                                x
                                   k
                                         m
               59.   y(x) – A   tan (λt)ln (µx)y(t) dt = f(x).
                             a
                                                                 m
                                                                                  k
                     This is a special case of equation 2.9.2 with g(x)= A ln (µx) and h(t) = tan (λt).
                                x
                                         m
                                  k
               60.   y(x) – A   cot (λx)ln (µt)y(t) dt = f(x).
                             a
                                                                                 m
                                                                  k
                     This is a special case of equation 2.9.2 with g(x)= A cot (λx) and h(t)=ln (µt).
                              x

                                  k
                                         m
               61.   y(x) – A   cot (λt)ln (µx)y(t) dt = f(x).
                             a
                                                                 m
                                                                                  k
                     This is a special case of equation 2.9.2 with g(x)= A ln (µx) and h(t) = cot (λt).
               2.8. Equations Whose Kernels Contain Special
                      Functions
                 2.8-1. Kernels Containing Bessel Functions
                              x

               1.    y(x) – λ  J 0 (x – t)y(t) dt = f(x).
                             0
                     Solution:
                                                          x
                                            y(x)= f(x)+    R(x – t)f(t) dt,
                                                        0
                     where
                                √           λ 2     √            λ      x   √           J 1 (t)
                                                                                 2
                                                         2
                                     2
                     R(x)= λ cos  1–λ x + √      sin  1–λ x + √         sin  1–λ (x–t)      dt.
                                            1–λ 2               1–λ 2  0                 t
                     •
                       Reference: V. I. Smirnov (1974).
                 © 1998 by CRC Press LLC
               © 1998 by CRC Press LLC
                                                                                                             Page 167
   183   184   185   186   187   188   189   190   191   192   193