Page 181 - Handbook Of Integral Equations
P. 181

x

               2.    y(x)+ A    e µ(x–t)  sinh[λ(x – t)]y(t) dt = f(x).
                              a
                     1 . Solution with λ(A – λ)>0:
                      ◦
                                           x
                                     Aλ      µ(x–t)

                          y(x)= f(x) –      e     sin[k(x – t)]f(t) dt,  where  k =  λ(A – λ).
                                      k   a
                     2 . Solution with λ(A – λ)<0:
                      ◦
                                     Aλ     x  µ(x–t)
                         y(x)= f(x) –       e    sinh[k(x – t)]f(t) dt,  where  k =  λ(λ – A).
                                      k  a

                     3 . Solution with A = λ:
                      ◦
                                                          x
                                         y(x)= f(x) – λ 2  (x – t)e µ(x–t) f(t) dt.
                                                        a

                               x

               3.    y(x)+    e µ(x–t)   A 1 sinh[λ 1 (x – t)] + A 2 sinh[λ 2 (x – t)] y(t) dt = f(x).
                            a
                     The substitution w(x)= e –µx y(x) leads to an equation of the form 2.3.18:
                                     x

                                                                               –µx
                             w(x)+     A 1 sinh[λ 1 (x – t)] + A 2 sinh[λ 2 (x – t)] w(t) dt = e  f(x).
                                    a
                                x
               4.    y(x)+ A    te µ(x–t)  sinh[λ(x – t)]y(t) dt = f(x).
                              a
                     The substitution w(x)= e –µx y(x) leads to an equation of the form 2.3.23:

                                                x

                                      w(x)+ A    t sinh[λ(x – t)]w(t) dt = e –µx f(x).
                                               a

                 2.7-2. Kernels Containing Exponential and Logarithmic Functions

                              x

               5.    y(x) – A   e µt  ln(λx)y(t) dt = f(x).
                             a
                                                                               µt
                     This is a special case of equation 2.9.2 with g(x)= A ln(λx) and h(t)= e .
                              x

               6.    y(x) – A   e µx  ln(λt)y(t) dt = f(x).
                             a
                     This is a special case of equation 2.9.2 with g(x)= Ae µx  and h(t) = ln(λt).

                              x

               7.    y(x) – A   e µ(x–t)  ln(λx)y(t) dt = f(x).
                             a
                     Solution:
                                                     x             (λx) Ax
                                    y(x)= f(x)+ A    e (µ–A)(x–t)  ln(λx)  At  f(t) dt.
                                                   a               (λt)



                 © 1998 by CRC Press LLC









               © 1998 by CRC Press LLC
                                                                                                             Page 160
   176   177   178   179   180   181   182   183   184   185   186