Page 177 - Handbook Of Integral Equations
P. 177

x
                                cot(λt)
               43.   y(x) – A          y(t) dt = f(x).
                             a cot(λx)
                     Solution:
                                                       x
                                                               cot(λt)
                                        y(x)= f(x)+ A    e A(x–t)    f(t) dt.
                                                       a      cot(λx)
                                x
                                 k
                                     m
               44.   y(x)+ A    t cot (λx)y(t) dt = f(x).
                              a
                                                                                  k
                                                                   m
                     This is a special case of equation 2.9.2 with g(x)= –A cot (λx) and h(t)= t .
                              x

                                     m
                                 k
               45.   y(x)+ A    x cot (λt)y(t) dt = f(x).
                              a
                                                                 k
                                                                              m
                     This is a special case of equation 2.9.2 with g(x)= –Ax and h(t) = cot (λt).
                             x


               46.   y(x) –    A cot(kx)+ B – AB(x – t) cot(kx) y(t) dt = f(x).
                            a
                     This is a special case of equation 2.9.7 with λ = B and g(x)= A cot(kx).
                               x

               47.   y(x)+     A cot(kt)+ B + AB(x – t) cot(kt) y(t) dt = f(x).
                            a
                     This is a special case of equation 2.9.8 with λ = B and g(t)= A cot(kt).
                 2.5-5. Kernels Containing Combinations of Trigonometric Functions
                              x

                                  k
                                          m
               48.   y(x) – A   cos (λx) sin (µt)y(t) dt = f(x).
                             a
                                                                                  m
                                                                  k
                     This is a special case of equation 2.9.2 with g(x)= A cos (λx) and h(t) = sin (µt).
                             x


               49.   y(x) –    A + B cos(λx) – B(x – t)[λ sin(λx)+ A cos(λx)] y(t) dt = f(x).
                            a
                     This is a special case of equation 2.9.38 with b = B and g(x)= A.
                               x

               50.   y(x) –    A + B sin(λx)+ B(x – t)[λ cos(λx) – A sin(λx)] y(t) dt = f(x).
                            a
                     This is a special case of equation 2.9.39 with b = B and g(x)= A.
                              x

                                           m
                                   k
               51.   y(x) – A   tan (λx) cot (µt)y(t) dt = f(x).
                             a
                                                                                  m
                                                                  k
                     This is a special case of equation 2.9.2 with g(x)= A tan (λx) and h(t) = cot (µt).
               2.6. Equations Whose Kernels Contain Inverse
                      Trigonometric Functions
                 2.6-1. Kernels Containing Arccosine

                                x
               1.    y(x) – A   arccos(λx)y(t) dt = f(x).
                             a
                     This is a special case of equation 2.9.2 with g(x)= A arccos(λx) and h(t)=1.




                 © 1998 by CRC Press LLC









               © 1998 by CRC Press LLC
                                                                                                             Page 156
   172   173   174   175   176   177   178   179   180   181   182