Page 197 - Handbook Of Integral Equations
P. 197

x    ϕ (x)



               17.   y(x)+       x    + ϕ(t)g (x) – ϕ (x)g(t) h(t) y(t) dt = f(x).

                                                    x
                                             x
                            a    ϕ(t)
                      ◦
                     1 . This equation is equivalent to the equation
                            x
                                                                                  x
                               ϕ(x)
                                   + ϕ(t)g(x) – ϕ(x)g(t) h(t) y(t) dt = F(x), F(x)=  f(x) dx,  (1)
                               ϕ(t)
                           a                                                    a
                     obtained by differentiating the original equation with respect to x. Equation (1) is a special
                     case of equation 1.9.15 with
                                                                            1
                           g 1 (x)= g(x),  h 1 (t)= ϕ(t)h(t),  g 2 (x)= ϕ(x),  h 2 (t)=  – g(t)h(t).
                                                                           ϕ(t)
                     2 . Solution:
                      ◦
                                                            x
                                                                       2
                                            1     d           F(t)  ϕ (t)h(t)
                                   y(x)=             Ξ(x)                   dt ,
                                         ϕ(x)h(x) dx       a  ϕ(t)  t  Ξ(t)
                                        x
                                                                x
                                                                  g(t)
                                                                         2
                                F(x)=    f(x) dx,  Ξ(x)=exp –           ϕ (t)h(t) dt .
                                       a                       a  ϕ(t)  t
                               x     ϕ (t)




               18.   y(x) –      t   + ϕ(x)g (t) – ϕ (t)g(x) h(x) y(t) dt = f(x).

                                             t
                                                   t
                            a   ϕ(x)
                     1 . Let f(a) = 0. The change
                      ◦
                                                           x
                                                  y(x)=    w(t) dt                          (1)
                                                         a
                     followed by the integration by parts leads to the equation
                                     x
                                        ϕ(t)

                                            + ϕ(x)g(t) – ϕ(t)g(x) h(x) w(t) dt = f(x),      (2)
                                        ϕ(x)
                                    a
                     which is a special case of equation 1.9.15 with
                                   1
                           g 1 (x)=   – g(x)h(x),  h 1 (t)= ϕ(t),  g 2 (x)= ϕ(x)h(x),  h 2 (t)= g(t).
                                 ϕ(x)
                        The solution of equation (2) is given by

                                                               x
                                          1  d     2               f(t)       dt
                                  y(x)=          ϕ (x)h(x)Φ(x)                  ,
                                        ϕ(x) dx               a   ϕ(t)h(t)  t  Φ(t)
                                                      x
                                                         g(t)
                                                               2
                                          Φ(x)=exp            ϕ (t)h(t) dt .
                                                     a  ϕ(t)  t
                     2 . Let f(a) ≠ 0. The substitution y(x)= ¯y(x)+ f(a) leads to the integral equation ¯y(x) with
                      ◦
                                     ¯
                                                            ¯
                                                                                     ◦
                     the right-hand side f(x) satisfying the condition f(a) = 0. Thus we obtain case 1 .
                 © 1998 by CRC Press LLC









               © 1998 by CRC Press LLC
                                                                                                             Page 176
   192   193   194   195   196   197   198   199   200   201   202