Page 200 - Handbook Of Integral Equations
P. 200

x

                                       λx          λx
               25.   y(x) –    g(x)+ be   + b(x – t)e  [λ – g(x)] y(t) dt = f(x).
                            a
                                                                λx
                     This is a special case of equation 2.9.16 with h(x)= be .
                        Solution:
                                                           x
                                            y(x)= f(x)+    R(x, t)f(t) dt,
                                                         a
                                                 G(x)    2 2λx    λx  H(x)     x  G(s)
                                              λx
                              R(x, t)=[g(x)+ be ]     +(b e   + bλe )             ds,
                                                 G(t)                G(t)  t  H(s)
                                       x                       b

                     where G(x)=exp     g(s) ds and H(x)=exp   e λx  .
                                      a                       λ
                               x
                                 λ(x–t)              λx
                                          λt
               26.   y(x)+     λe     + e g (x) – λe   g(t) h(t) y(t) dt = f(x).
                                             x
                            a
                                                                λx
                     This is a special case of equation 2.9.17 with ϕ(x)= e .
                               x
                                 –λ(x–t)             λt
               27.   y(x) –    λe      + e λx
                                             g (t) – λe g(x) h(x) y(t) dt = f(x).
                                              t
                            a
                                                                λx
                     This is a special case of equation 2.9.18 with ϕ(x)= e .
                             x

               28.   y(x)+    cosh[λ(x – t)]g(t)y(t) dt = f(x).
                            a
                     Differentiating the equation with respect to x twice yields
                                                  x


                               y (x)+ g(x)y(x)+ λ   sinh[λ(x – t)]g(t)y(t) dt = f (x),      (1)

                                x                                         x
                                                 a
                                                       x

                                                    2

                               y (x)+ g(x)y(x)   + λ    cosh[λ(x – t)]g(t)y(t) dt = f (x).  (2)

                                xx             x                               xx
                                                      a
                        Eliminating the integral term from (2) with the aid of the original equation, we arrive at
                     the second-order linear ordinary differential equation
                                                        2            2

                                         y     + g(x)y  x  – λ y = f (x) – λ f(x).          (3)
                                                             xx
                                          xx
                     By setting x = a in the original equation and (1), we obtain the initial conditions for y = y(x):


                                        y(a)= f(a),   y (a)= f (a) – f(a)g(a).              (4)
                                                              x
                                                       x
                        Equation (3) under conditions (4) determines the solution of the original integral equation.
                               x
               29.   y(x)+    cosh[λ(x – t)]g(x)h(t)y(t) dt = f(x).
                            a
                     The substitution y(x)= g(x)u(x) leads to an equation of the form 2.9.28:
                                             x
                                    u(x)+    cosh[λ(x – t)]g(t)h(t)u(t) dt = f(x)/g(x).
                                           a


                 © 1998 by CRC Press LLC









               © 1998 by CRC Press LLC
                                                                                                             Page 179
   195   196   197   198   199   200   201   202   203   204   205