Page 199 - Handbook Of Integral Equations
P. 199

x

                                 λx      µx
               22.   y(x)+     e  g(t)+ e  h(t) y(t) dt = f(x).
                            a
                     Let us differentiate the equation twice and then eliminate the integral terms from the resulting
                     relations and the original equation. As a result, we arrive at the second-order linear ordinary
                     differential equation

                             λx     µx

                                                      λx
                                                               µx
                     y     + e g(x)+ e h(x) – λ – µ y + e g (x)+ e h (x)
                      xx                         x       x        x
                                        λx
                                                      µx



                                +(λ – µ)e g(x)+(µ – λ)e h(x)+ λµ y = f (x) – (λ + µ)f (x)+ λµf(x),
                                                                                  x
                                                                     xx
                     which must be supplemented by the initial conditions
                                                                λa     µa


                                  y(a)= f(a),   y (a)= f (a) – e g(a)+ e h(a) f(a).
                                                 x
                                                       x
                        Example. The Arutyunyan equation
                                            x  ∂     1
                                     y(x) –  ϕ(t)     + ψ(t) 1 – e –λ(x–t)  y(t) dt = f(x),
                                          a    ∂t  ϕ(t)
                     can be reduced to the above equation. The former is encountered in the theory of viscoelasticity for aging solids.
                     The solution of the Arutyunyan equation is given by
                                              x  1  ∂                 x
                                                              2
                                  y(x)= f(x) –      ϕ(t) – λψ(t)ϕ (t)e η(t)  e –η(s) ds f(t) dt,
                                            a ϕ(t) ∂t               t
                     where
                                                   x
                                                                ϕ (t)

                                            η(x)=   λ 1+ ψ(t)ϕ(t) –  dt.
                                                                ϕ(t)
                                                 a
                     •
                       Reference: N. Kh. Arutyunyan (1966).
                               x
                                 λ(x–t)     µx+λt   λx+µt
               23.   y(x)+     λe     + µe      – λe      h(t) y(t) dt = f(x).
                            a
                                                                            µx
                     This is a special case of equation 2.9.17 with ϕ(x)= e λx  and g(x)= e .
                        Solution:
                                                         x
                                          1    d            F(t)       e 2λt h(t)
                                 y(x)=             Φ(x)                  dt ,
                                        λx
                                        e h(x) dx       a   e λt  t  Φ(t)
                                         x                           x

                                 F(x)=    f(t) dt,  Φ(x)=exp (λ – µ)  e (λ+µ)t h(t) dt .
                                        a                           a
                               x
                                 –λ(x–t)     λx+µt   µx+λt
               24.   y(x) –    λe      + µe      – λe      h(x) y(t) dt = f(x).
                            a
                                                                            µx
                     This is a special case of equation 2.9.18 with ϕ(x)= e λx  and g(x)= e .
                        Assume that f(a) = 0. Solution:
                                                                      x
                                    x                   d     e 2λx h(x)       f(t)
                           y(x)=    w(t) dt,  w(x)= e –λx                λt     Φ(t) dt ,
                                  a                    dx    Φ(x)    a  e h(t)  t
                                                       x

                                     Φ(x)=exp (λ – µ)   e (λ+µ)t h(t) dt .
                                                      a
                 © 1998 by CRC Press LLC









               © 1998 by CRC Press LLC
                                                                                                             Page 178
   194   195   196   197   198   199   200   201   202   203   204