Page 205 - Handbook Of Integral Equations
P. 205

2 . Let w = w(x) be the solution of the simpler auxiliary equation with a = 0 and f ≡ 1:
                      ◦
                                                     x

                                             w(x)+    K(x – t)w(t) dt = 1.                  (2)
                                                    0
                     Then the solution of the original integral equation with arbitrary f = f(x) is expressed via the
                     solution of the auxiliary equation (2) as

                                         x                              x
                                     d


                              y(x)=       w(x – t)f(t) dt = f(a)w(x – a)+  w(x – t)f (t) dt.
                                                                                t
                                    dx
                                        a                             a
                     •
                       Reference: R. Bellman and K. L. Cooke (1963).
                               x
               41.   y(x)+     K(x – t)y(t) dt =0.
                            –∞
                     Eigenfunctions of this integral equation are determined by the roots of the following tran-
                     scendental (algebraic) equation for the parameter λ:

                                                  ∞

                                                    K(z)e –λz  dz = –1.                     (1)
                                                 0
                     The left-hand side of this equation is the Laplace transform of the kernel of the integral
                     equation.
                     1 . For a real simple root λ k of equation (1) there is a corresponding eigenfunction
                      ◦

                                                  y k (x)=exp(λ k x).

                     2 . For a real root λ k of multiplicity r there are corresponding r eigenfunctions
                      ◦
                           y k1 (x) = exp(λ k x),  y k2 (x)= x exp(λ k x),  ... ,  y kr (x)= x r–1  exp(λ k x).


                     3 . For a complex simple root λ k = α k + iβ k of equation (1) there is a corresponding
                      ◦
                     eigenfunction pair
                                  (1)
                                                            (2)
                                 y (x) = exp(α k x) cos(β k x),  y (x)=exp(α k x) sin(β k x).
                                  k                         k
                      ◦
                     4 . For a complex root λ k = α k +iβ k of multiplicity r there are corresponding r eigenfunction
                     pairs
                               (1)                          (2)
                             y (x)=exp(α k x) cos(β k x),  y (x) = exp(α k x) sin(β k x),
                              k1                            k1
                               (1)                          (2)
                             y (x)= x exp(α k x) cos(β k x),  y (x)= x exp(α k x) sin(β k x),
                              k2                            k2
                              ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅    ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅
                                                            (2)
                               (1)
                             y (x)= x r–1  exp(α k x) cos(β k x),  y (x)= x r–1  exp(α k x) sin(β k x).
                              kr                            kr
                        The general solution is the combination (with arbitrary constants) of the eigenfunctions
                     of the homogeneous integral equation.



                 © 1998 by CRC Press LLC









               © 1998 by CRC Press LLC
                                                                                                             Page 184
   200   201   202   203   204   205   206   207   208   209   210