Page 209 - Handbook Of Integral Equations
P. 209

7 .For f(x)=  n    A k sin(λ k x), a solution of the equation has the form
                      ◦
                                 k=0
                                           n
                                                A k

                                    y(x)=      2    2  B ck sin(λ k x)+ B sk cos(λ k x) ,
                                             B   + B
                                          k=0  ck   sk
                                         ∞                          ∞

                               B ck =1 +   K(z) cos(λ k z) dz,  B sk =  K(z) sin(λ k z) dz.
                                         0                         0
                     8 .For f(x) = cos(λx)  n    A k exp(µ k x), a solution of the equation has the form
                      ◦
                                        k=0
                                        n                           n

                                            A k B ck                    A k B sk
                           y(x) = cos(λx)           exp(µ k x) – sin(λx)        exp(µ k x),
                                           B  2  + B  2                B 2  + B  2
                                        k=0  ck   sk                k=0  ck   sk
                                  ∞                                 ∞

                       B ck =1 +    K(z) exp(–µ k z) cos(λz) dz,  B sk =  K(z) exp(–µ k z) sin(λz) dz.
                                 0                                 0
                     9 .For f(x) = sin(λx)  n    A k exp(µ k x), a solution of the equation has the form
                      ◦
                                       k=0
                                        n                           n
                                            A k B ck                    A k B sk

                           y(x) = sin(λx)          exp(µ k x) + cos(λx)         exp(µ k x),
                                           B 2  + B 2                  B 2  + B 2
                                       k=0  ck   sk                 k=0  ck   sk
                                  ∞                                 ∞

                       B ck =1 +    K(z) exp(–µ k z) cos(λz) dz,  B sk =  K(z) exp(–µ k z) sin(λz) dz.
                                 0                                 0
                             ∞

               52.   y(x)+     K(x – t)y(t) dt =0.
                            x
                     Eigenfunctions of this integral equation are determined by the roots of the following tran-
                     scendental (algebraic) equation for the parameter λ:
                                                  ∞

                                                    K(–z)e λz  dz = –1.                     (1)
                                                 0
                     The left-hand side of this equation is the Laplace transform of the function K(–z) with
                     parameter –λ.
                      ◦
                     1 . For a real simple root λ k of equation (1) there is a corresponding eigenfunction
                                                  y k (x)=exp(λ k x).
                      ◦
                     2 . For a real root λ k of multiplicity r there are corresponding r eigenfunctions
                           y k1 (x) = exp(λ k x),  y k2 (x)= x exp(λ k x),  ... ,  y kr (x)= x r–1  exp(λ k x).
                      ◦
                     3 . For a complex simple root λ k = α k + iβ k of equation (1) there is a corresponding
                     eigenfunction pair
                                  (1)
                                                            (2)
                                 y (x) = exp(α k x) cos(β k x),  y (x)=exp(α k x) sin(β k x).
                                  k                         k
                     4 . For a complex root λ k = α k +iβ k of multiplicity r there are corresponding r eigenfunction
                      ◦
                     pairs
                               (1)
                                                            (2)
                             y (x)=exp(α k x) cos(β k x),  y (x) = exp(α k x) sin(β k x),
                              k1                            k1
                               (1)                          (2)
                             y (x)= x exp(α k x) cos(β k x),  y (x)= x exp(α k x) sin(β k x),
                              k2                            k2
                              ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅    ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅
                               (1)    r–1                   (2)     r–1
                             y (x)= x    exp(α k x) cos(β k x),  y (x)= x  exp(α k x) sin(β k x).
                              kr                            kr
                        The general solution is the combination (with arbitrary constants) of the eigenfunctions
                     of the homogeneous integral equation.
                 © 1998 by CRC Press LLC









               © 1998 by CRC Press LLC
                                                                                                             Page 188
   204   205   206   207   208   209   210   211   212   213   214